|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
| {{delete|not in user namespace, move [[User:Lentarot|here]]}} | | {{delete|not in user namespace, move [[User:Lentarot|here]]}} |
− | ==HELLO GUYS==
| |
− |
| |
− | こんにちは!
| |
− |
| |
− | Hello
| |
− |
| |
− | <math>f(z)=\sum_{j=-\infty}^{\infty} C_n (z-\alpha)^n</math>
| |
− |
| |
− | <math>C_n=\frac{1}{2\pi i}\int\frac{f(\xi)}{(\xi-\alpha)^{n+1}}</math>
| |
− |
| |
− | <math>\oint_{\gamma}f(z)dz = \sum_{k=1}^{n}\oint_{\gamma_k}f(z)dz</math>
| |
− |
| |
− | <math>\oint_{\gamma}f(z)dz = \sum_{k=1}^{n}\oint_{\gamma_k}\sum_{j=-\infty}^{\infty}C_n (z-\alpha_k)^n</math>
| |
− |
| |
− | <math>\oint_{\gamma}f(z)dz = \sum_{k=1}^{n}\sum_{j=-\infty}^{\infty}C_n\oint_{\gamma_k} (z-\alpha_k)^n</math>
| |
− |
| |
− | <math>z(\theta)=\alpha_k+ae^{i\theta}</math> <math>(0\leq\theta\leq 2\pi)</math>
| |
− |
| |
− | <math>dz=iae^{i\theta}d\theta</math>
| |
− |
| |
− | <math>\oint_{\gamma}f(z)dz = \sum_{k=1}^{n}\sum_{j=-\infty}^{\infty}C_n\int_{0}^{2\pi} (ae^{i\theta})^j iae^{i\theta}d\theta</math>
| |
− |
| |
− | <math>\oint_{\gamma}f(z)dz = \sum_{k=1}^{n}\sum_{j=-\infty}^{\infty}C_n ia^{j+1} \int_{0}^{2\pi}e^{i(j+1)\theta}d\theta</math>
| |
− |
| |
− | <math>\oint_{\gamma}f(z)dz = \sum_{k=1}^{n}\sum_{j=-\infty}^{\infty}C_n ia^{j+1} [\frac{1}{i(n+1)}e^{i(j+1)\theta}]_{0}^{2\pi}</math>
| |
− |
| |
− | <math> \int_{0}^{2\pi}e^{i(n+1)\theta}d\theta =\begin{cases}0 & n\neq -1\\2\pi i & n=-1\end{cases} </math>
| |
− |
| |
− | <math>\oint_{\gamma}f(z)dz = \sum_{k=1}^{n}2\pi i C_{-1}</math>
| |
− |
| |
− | <cmath>\boxed{\oint_{\gamma}f(z)dz = 2\pi i\sum_{k=1}^{n}res(f(z),\alpha_{k})}</cmath>
| |
− |
| |
− | ==contributions==
| |
− |
| |
− | [[2016 AIME I Problems/Problem 10]] Solution 4
| |