Difference between revisions of "2016 AMC 8 Problems/Problem 22"
(→Video Solution only problem 22's by SpreadTheMathLov) |
m (→Solution 1) |
||
(2 intermediate revisions by one other user not shown) | |||
Line 25: | Line 25: | ||
==Solution 1== | ==Solution 1== | ||
The area of trapezoid <math>CBFE</math> is <math>\frac{1+3}2\cdot 4=8</math>. Next, we find the height of each triangle to calculate their area. The two non-colored isosceles triangles are similar, and are in a <math>3:1</math> ratio by AA similarity (alternate interior and vertical angles) so the height of the larger is <math>3,</math> while the height of the smaller one is <math>1.</math> Thus, their areas are <math>\frac12</math> and <math>\frac92</math>. Subtracting these areas from the trapezoid, we get <math>8-\frac12-\frac92 =\boxed3</math>. Therefore, the answer to this problem is <math>\boxed{\textbf{(C) }3}</math>. | The area of trapezoid <math>CBFE</math> is <math>\frac{1+3}2\cdot 4=8</math>. Next, we find the height of each triangle to calculate their area. The two non-colored isosceles triangles are similar, and are in a <math>3:1</math> ratio by AA similarity (alternate interior and vertical angles) so the height of the larger is <math>3,</math> while the height of the smaller one is <math>1.</math> Thus, their areas are <math>\frac12</math> and <math>\frac92</math>. Subtracting these areas from the trapezoid, we get <math>8-\frac12-\frac92 =\boxed3</math>. Therefore, the answer to this problem is <math>\boxed{\textbf{(C) }3}</math>. | ||
+ | |||
+ | ~23orimy412uc3478 | ||
==Video Solution (CREATIVE THINKING + ANALYSIS!!!)== | ==Video Solution (CREATIVE THINKING + ANALYSIS!!!)== |
Latest revision as of 19:59, 6 January 2025
Contents
Problem
Rectangle below is a rectangle with . The area of the "bat wings" (shaded area) is
Solution 1
The area of trapezoid is . Next, we find the height of each triangle to calculate their area. The two non-colored isosceles triangles are similar, and are in a ratio by AA similarity (alternate interior and vertical angles) so the height of the larger is while the height of the smaller one is Thus, their areas are and . Subtracting these areas from the trapezoid, we get . Therefore, the answer to this problem is .
~23orimy412uc3478
Video Solution (CREATIVE THINKING + ANALYSIS!!!)
~Education, the Study of Everything
Video Solutions
- https://youtu.be/q3MAXwNBkcg ~savannahsolver
Video Solution
https://youtu.be/FDgcLW4frg8?t=4448 ~ pi_is_3.14
Video Solution only problem 22's by SpreadTheMathLove
https://www.youtube.com/watch?v=sOF1Okc0jMc
See Also
2016 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.