Difference between revisions of "2001 AMC 8 Problems/Problem 12"
Megaboy6679 (talk | contribs) |
(→Solution 2 (Overkill)) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 13: | Line 13: | ||
When you expand the general form of <math>(a\otimes b)\otimes c</math>, you get <cmath>(a\otimes b)\otimes c = \dfrac{a\otimes b + c}{a\otimes b - c}</cmath> | When you expand the general form of <math>(a\otimes b)\otimes c</math>, you get <cmath>(a\otimes b)\otimes c = \dfrac{a\otimes b + c}{a\otimes b - c}</cmath> | ||
<cmath> (a\otimes b)\otimes c = \dfrac{\dfrac{a + b}{a - b} + c}{\dfrac{a + b}{a - b} - c} </cmath> | <cmath> (a\otimes b)\otimes c = \dfrac{\dfrac{a + b}{a - b} + c}{\dfrac{a + b}{a - b} - c} </cmath> | ||
− | <cmath> (a\otimes b)\otimes c = \dfrac{\dfrac{a + b + ac - | + | <cmath> (a\otimes b)\otimes c = \dfrac{\dfrac{a + b + ac - bc}{a - b}}{\dfrac{a + b - ac + bc}{a - b}} </cmath> |
− | <cmath> (a\otimes b)\otimes c = \dfrac{a + b + ac - | + | <cmath> (a\otimes b)\otimes c = \dfrac{a + b + ac -bc}{a + b - ac + bc} </cmath> |
Now, substituting <math>a=6</math>, <math>b=4</math>, and <math>c=3</math>: | Now, substituting <math>a=6</math>, <math>b=4</math>, and <math>c=3</math>: | ||
Line 21: | Line 21: | ||
<cmath> (6\otimes 4)\otimes 3 = \dfrac{16}{4} </cmath> | <cmath> (6\otimes 4)\otimes 3 = \dfrac{16}{4} </cmath> | ||
<cmath> (6\otimes 4)\otimes 3 = 4 </cmath> | <cmath> (6\otimes 4)\otimes 3 = 4 </cmath> | ||
− | <math>\boxed{\text {(A)}</math> | + | <math>\boxed{\text {(A)}}</math> |
~megaboy6679 | ~megaboy6679 |
Latest revision as of 13:10, 22 December 2024
Problem
If , then
Solution 1
.
Solution 2 (Overkill)
When you expand the general form of , you get
Now, substituting , , and :
~megaboy6679
Video Solution-Cooler Method
https://www.youtube.com/watch?v=ZfwtAiH_6PI&t=36s
See Also
2001 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.