Difference between revisions of "1984 AHSME Problems/Problem 27"
(→Solution 2 (single-variable)) |
Jj empire10 (talk | contribs) |
||
Line 28: | Line 28: | ||
Let <math> AC=x </math> and <math> BF=y </math>. We have <math> AFC\sim BFA </math> by AA, so <math> \frac{AF}{FC}=\frac{BF}{AF} </math>. Substituting in known values gives <math> \frac{AF}{1}=\frac{y}{AF} </math>, so <math> AF=\sqrt{y} </math>. Also, <math> AD=x-1 </math>, and using the [[Pythagorean Theorem]] on <math> \triangle ABD </math>, we have <math> AB^2+(x-1)^2=1^2 </math>, so <math> AB=\sqrt{2x-x^2} </math>. Using the Pythagorean Theorem on <math> \triangle AFC </math> gives <math> y+1=x^2 </math>, or <math> y=x^2-1 </math>. Now, we use the Pythagorean Theorem on <math> \triangle AFB </math> to get <math> y^2+y=2x-x^2 </math>. Substituting <math> y=x^2-1 </math> into this gives <math> (x^2-1)^2+x^2-1=2x-x^2 </math>, or <math> x^4-2x^2+1+x^2-1=2x-x^2 </math>. Simplifying this and moving all of the terms to one side gives <math> x^4-2x=0 </math>, and since <math> x\not=0 </math>, we can divide by <math> x </math> to get <math> x^3-2=0 </math>, from which we find that <math> x=\sqrt[3]{2}, \boxed{\text{C}} </math>. | Let <math> AC=x </math> and <math> BF=y </math>. We have <math> AFC\sim BFA </math> by AA, so <math> \frac{AF}{FC}=\frac{BF}{AF} </math>. Substituting in known values gives <math> \frac{AF}{1}=\frac{y}{AF} </math>, so <math> AF=\sqrt{y} </math>. Also, <math> AD=x-1 </math>, and using the [[Pythagorean Theorem]] on <math> \triangle ABD </math>, we have <math> AB^2+(x-1)^2=1^2 </math>, so <math> AB=\sqrt{2x-x^2} </math>. Using the Pythagorean Theorem on <math> \triangle AFC </math> gives <math> y+1=x^2 </math>, or <math> y=x^2-1 </math>. Now, we use the Pythagorean Theorem on <math> \triangle AFB </math> to get <math> y^2+y=2x-x^2 </math>. Substituting <math> y=x^2-1 </math> into this gives <math> (x^2-1)^2+x^2-1=2x-x^2 </math>, or <math> x^4-2x^2+1+x^2-1=2x-x^2 </math>. Simplifying this and moving all of the terms to one side gives <math> x^4-2x=0 </math>, and since <math> x\not=0 </math>, we can divide by <math> x </math> to get <math> x^3-2=0 </math>, from which we find that <math> x=\sqrt[3]{2}, \boxed{\text{C}} </math>. | ||
− | ==Solution | + | == Video Solution by Pi Academy == |
− | + | https://youtu.be/fZAChuJDlSw?si=wJUPmgVRlYwazauh | |
− | + | ||
− | + | ~ SmartSchoolBoy9, Out | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==See Also== | ==See Also== | ||
{{AHSME box|year=1984|num-b=26|num-a=28}} | {{AHSME box|year=1984|num-b=26|num-a=28}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 12:38, 11 December 2024
Problem
In , is on and is on . Also, , , and . Find .
Solution
Let and . We have by AA, so . Substituting in known values gives , so . Also, , and using the Pythagorean Theorem on , we have , so . Using the Pythagorean Theorem on gives , or . Now, we use the Pythagorean Theorem on to get . Substituting into this gives , or . Simplifying this and moving all of the terms to one side gives , and since , we can divide by to get , from which we find that .
Video Solution by Pi Academy
https://youtu.be/fZAChuJDlSw?si=wJUPmgVRlYwazauh
~ SmartSchoolBoy9, Out
See Also
1984 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 26 |
Followed by Problem 28 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.