Difference between revisions of "2018 AIME I Problems/Problem 4"
(→Solution 0 (Fastest via Law of Cosines)) |
(→Solution 9 Even Faster Law of Cosines(1 variable equation)) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
In <math>\triangle ABC, AB = AC = 10</math> and <math>BC = 12</math>. Point <math>D</math> lies strictly between <math>A</math> and <math>B</math> on <math>\overline{AB}</math> and point <math>E</math> lies strictly between <math>A</math> and <math>C</math> on <math>\overline{AC}</math> so that <math>AD = DE = EC</math>. Then <math>AD</math> can be expressed in the form <math>\dfrac{p}{q}</math>, where <math>p</math> and <math>q</math> are relatively prime positive integers. Find <math>p+q</math>. | In <math>\triangle ABC, AB = AC = 10</math> and <math>BC = 12</math>. Point <math>D</math> lies strictly between <math>A</math> and <math>B</math> on <math>\overline{AB}</math> and point <math>E</math> lies strictly between <math>A</math> and <math>C</math> on <math>\overline{AC}</math> so that <math>AD = DE = EC</math>. Then <math>AD</math> can be expressed in the form <math>\dfrac{p}{q}</math>, where <math>p</math> and <math>q</math> are relatively prime positive integers. Find <math>p+q</math>. | ||
− | ==Solution | + | ==Solution (Easiest Law of Cosines)== |
We apply Law of Cosines on <math>\angle A</math> twice (one from <math>\triangle ADE</math> and one from <math>\triangle ABC</math>), | We apply Law of Cosines on <math>\angle A</math> twice (one from <math>\triangle ADE</math> and one from <math>\triangle ABC</math>), | ||
Line 153: | Line 153: | ||
-Stormersyle | -Stormersyle | ||
− | == Solution 9 | + | == Solution 9 one second accurate solve(1 variable equation)== |
Doing law of cosines we know that <math>\cos A</math> is <math>\frac{7}{25}.</math>* Dropping the perpendicular from <math>D</math> to <math>AE</math> we get that <cmath>\frac{10-x}{2}=\frac{7x}{25}.</cmath> | Doing law of cosines we know that <math>\cos A</math> is <math>\frac{7}{25}.</math>* Dropping the perpendicular from <math>D</math> to <math>AE</math> we get that <cmath>\frac{10-x}{2}=\frac{7x}{25}.</cmath> |
Latest revision as of 21:55, 14 December 2024
Contents
- 1 Problem 4
- 2 Solution (Easiest Law of Cosines)
- 3 Solution 1 (No Trig)
- 4 Solution 2 (Easy Similar Triangles)
- 5 Solution 3 (Algebra w/ Law of Cosines)
- 6 Solution 4 (Coordinates)
- 7 Solution 5 (Law of Cosines)
- 8 Solution 6
- 9 Solution 7 (Area into Similar Triangles)
- 10 Solution 8 (Easiest way- Coordinates without bash)
- 11 Solution 9 one second accurate solve(1 variable equation)
- 12 Solution 10 (Law of Sines)
- 13 Solution 11 (Trigonometry)
- 14 Solution 12 (Double Angle Identity)
- 15 Video Solution
- 16 See Also
Problem 4
In and . Point lies strictly between and on and point lies strictly between and on so that . Then can be expressed in the form , where and are relatively prime positive integers. Find .
Solution (Easiest Law of Cosines)
We apply Law of Cosines on twice (one from and one from ),
\begin{align*} 12^2 &= 10^2 + 10^2 - 2(10)(10) \cdot \cos{A} \\[5pt] x^2&=x^2+(10-x)^2-2(x)(10-x)\cdot \cos{A} \end{align*}
Solving for in both equations, we get \begin{align*} \cos{A} &= \frac{7}{25} \\ \cos{A} &= \frac{(10-x)^2}{(2)(10-x)(x)} = \frac{10-x}{2x} \end{align*} Setting the two equal, \begin{align*} \frac{10-x}{2x} &= \frac{7}{25} \\[5pt] 250-25x &= 14x \\[5pt] x &= \frac{250}{39}. \end{align*} Therefore, our answer is
Note that this strategy of applying LOC on congruent or supplementary angles is very common. It's also how Stewart's Theorem is derived.
-RootThreeOverTwo, edits by epiconan
Solution 1 (No Trig)
We draw the altitude from to to get point . We notice that the triangle's height from to is 8 because it is a Right Triangle. To find the length of , we let represent and set up an equation by finding two ways to express the area. The equation is , which leaves us with . We then solve for the length , which is done through pythagorean theorm and get = . We can now see that is a Right Triangle. Thus, we set as , and yield that . Now, we can see = . Solving this equation, we yield , or . Thus, our final answer is .
~bluebacon008
Diagram edited by Afly
Solution 2 (Easy Similar Triangles)
We start by adding a few points to the diagram. Call the midpoint of , and the midpoint of . (Note that and are altitudes of their respective triangles). We also call . Since triangle is isosceles, , and . Since , and . Since is a right triangle, .
Since and , triangles and are similar by Angle-Angle similarity. Using similar triangle ratios, we have . and because there are triangles in the problem. Call . Then , , and . Thus . Our ratio now becomes . Solving for gives us . Since is a height of the triangle , , or . Solving the equation gives us , so our answer is .
Solution 3 (Algebra w/ Law of Cosines)
As in the diagram, let . Consider point on the diagram shown above. Our goal is to be able to perform Pythagorean Theorem on , and . Let . Therefore, it is trivial to see that (leave everything squared so that it cancels nicely at the end). By Pythagorean Theorem on Triangle , we know that . Finally, we apply Law of Cosines on Triangle . We know that . Therefore, we get that . We can now do our final calculation: After some quick cleaning up, we get Therefore, our answer is .
~awesome1st
Solution 4 (Coordinates)
Let , , and . Then, let be in the interval and parametrically define and as and respectively. Note that , so . This means that However, since is extraneous by definition, ~ mathwiz0803
Solution 5 (Law of Cosines)
As shown in the diagram, let denote . Let us denote the foot of the altitude of to as . Note that can be expressed as and is a triangle . Therefore, and . Before we can proceed with the Law of Cosines, we must determine . Using LOC, we can write the following statement: Thus, the desired answer is ~ blitzkrieg21
Solution 6
In isosceles triangle, draw the altitude from onto . Let the point of intersection be . Clearly, , and hence .
Now, we recognise that the perpendicular from onto gives us two -- triangles. So, we calculate and
. And hence,
Inspecting gives us Solving the equation gives
~novus677
Solution 7 (Area into Similar Triangles)
After calling and , we see we have length ratios in terms of , which motivates area ratios. We look at the area of triangle in two ways in order to find (perpendicular from to ), and then use similar triangles to find .
Using area ratios, . (To find the total area , drop the altitudes from to , and call the foot of the altitude . By the 6-8-10 triangle, the height is and the area of is .)
The second way of finding the area of triangle is . The base is , and is the height. Therefore,
\begin{align*} [ACD] = \frac{24x}{5} &= \frac{1}{2} \cdot 10 \cdot DG \\[5pt] \frac{24x}{25} &= DG \end{align*}
Now we have in terms of , we use the similar triangles and and set up the proportion \begin{align*} \frac{DG}{CF} &= \frac{GC}{FA} \\[5pt] \frac{\frac{24x}{25}}{6} &= \frac{5+\frac{x}{2}}{8} \\[5pt] x &= \frac{250}{39}. \end{align*} So, our answer is . -epiconan
Solution 8 (Easiest way- Coordinates without bash)
Let , and . From there, we know that , so line is . Hence, for some , and so . Now, notice that by symmetry, , so . Because , we now have , which simplifies to , so , and . It follows that , and our answer is .
-Stormersyle
Solution 9 one second accurate solve(1 variable equation)
Doing law of cosines we know that is * Dropping the perpendicular from to we get that Solving for we get so our answer is .
-harsha12345
- It is good to remember that doubling the smallest angle of a 3-4-5 triangle gives the larger (not right) angle in a 7-24-25 triangle.
Solution 10 (Law of Sines)
Let's label and . Using isosceles triangle properties and the triangle angle sum equation, we get Solving, we find .
Relabelling our triangle, we get . Dropping an altitude from to and using the Pythagorean theorem, we find . Using the sine area formula, we see . Plugging in our sine angle cofunction identity, , we get .
Now, using the Law of Sines on , we get After applying numerous trigonometric and algebraic tricks, identities, and simplifications, such as and , we find .
Therefore, our answer is .
~Tiblis
Solution 11 (Trigonometry)
We start by labelling a few angles (all of them in degrees). Let . Also let . By sine rule in we get Using sine rule in , we get . Hence we get . Hence . Therefore, our answer is
Alternatively, use sine rule in . (It’s easier)
~Prabh1512
Solution 12 (Double Angle Identity)
We let . Then, angle is and so is angle . We note that . We drop an altitude from to , and we call the foot . We note that . Using the double angle identity, we have Therefore, We now use the Pythagorean Theorem, which gives . Rearranging and simplifying, this becomes . Using the quadratic formula, this is . We take out a from the square root and make it a outside of the square root to make it simpler. We end up with . We note that this must be less than 10 to ensure that is positive. Therefore, we take the minus, and we get
~john0512
Video Solution
https://www.youtube.com/watch?v=iE8paW_ICxw
https://youtu.be/dI6uZ67Ae2s ~yofro
See Also
2018 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.