Difference between revisions of "1970 IMO Problems/Problem 3"
(4 intermediate revisions by the same user not shown) | |||
Line 9: | Line 9: | ||
<center> | <center> | ||
− | <math>b_n = \sum_{k=1}^{n} \ | + | <math>b_n = \sum_{k=1}^{n} \left( 1 - \frac{a_{k-1}}{a_{k}} \right) \frac{1}{\sqrt{a_k}}</math> |
</center> | </center> | ||
Line 87: | Line 87: | ||
<math>\lim_{\Delta x \to 0^+} b_n = \int_{1}^{a_n} x^{-\frac{3}{2}} dx</math> | <math>\lim_{\Delta x \to 0^+} b_n = \int_{1}^{a_n} x^{-\frac{3}{2}} dx</math> | ||
− | is incorrect. ( | + | is incorrect. (To put it bluntly, it makes no sense!) The upper |
limit of the integral, <math>a_n</math> depends on <math>\Delta x</math>, so it can not | limit of the integral, <math>a_n</math> depends on <math>\Delta x</math>, so it can not | ||
− | be the result of a <math>\lim_{\Delta x \to 0^+}</math>! In fact, it is not | + | be the result of a limit <math>\lim_{\Delta x \to 0^+}</math>! In fact, it |
− | even clear what is meant by <math>\lim_{\Delta x \to 0^+} b_n</math>. | + | is not even clear what is meant by <math>\lim_{\Delta x \to 0^+} b_n</math>. |
The errors and inconsistencies just continue accumulating and | The errors and inconsistencies just continue accumulating and | ||
− | building | + | building up in the remainder of the proof. |
3. Below, I will give a corrected proof of part (b) of the problem, | 3. Below, I will give a corrected proof of part (b) of the problem, | ||
Line 116: | Line 116: | ||
Now, we can find a set of points <math>1 = a_0 < a_1 < \cdots < a_n = A</math> | Now, we can find a set of points <math>1 = a_0 < a_1 < \cdots < a_n = A</math> | ||
− | in the interval <math>[1 | + | in the interval <math>[1, A]</math>, such that the [[Riemann sum]] <math>b_n</math> |
corresponding to these points is as close to the integral as we want, | corresponding to these points is as close to the integral as we want, | ||
in particular <math>\int_{1}^{A} x^{-\frac{3}{2}} dx - b_n < \frac{\epsilon}{2}</math>. | in particular <math>\int_{1}^{A} x^{-\frac{3}{2}} dx - b_n < \frac{\epsilon}{2}</math>. | ||
Line 133: | Line 133: | ||
==Solution 2== | ==Solution 2== | ||
+ | This is a solution which does not use calculus. | ||
+ | Taking in account that <math>a_{k-1} \le a_k</math> we have | ||
+ | <math>\left( 1 - \frac{a_{k-1}}{a_k} \right) \frac{1}{\sqrt{a_k}} = | ||
+ | \frac{a_k - a_{k-1}}{a_k \sqrt{a_k}} \le | ||
+ | \frac{a_k - a_{k-1}}{\sqrt{a_{k-1}}\ \sqrt{a_k}\ \frac{\sqrt{a_k} + \sqrt{a_{k-1}}}{2}} = | ||
+ | \frac{2(\sqrt{a_k} - \sqrt{a_{k-1}})}{\sqrt{a_{k-1}} \sqrt{a_k}} = | ||
+ | 2 \left( \frac{1}{\sqrt{a_{k-1}}} - \frac{1}{\sqrt{a_k}} \right)</math> | ||
+ | Taking the sum, we get | ||
+ | <math>b_n = \sum_{k=1}^n \left( 1 - \frac{a_{k-1}}{a_k} \right) \frac{1}{\sqrt{a_k}} \le | ||
+ | \sum_{k=1}^n 2 \left( \frac{1}{\sqrt{a_{k-1}}} - \frac{1}{\sqrt{a_k}} \right) = | ||
+ | 2 \left( 1 - \frac{1}{\sqrt{a_n}} \right) < 2</math>. | ||
+ | This proves (a). | ||
+ | To prove (b), let us take <math>a_k = 1 + k \alpha</math>, with <math>\alpha >0</math>. We do similar tricks: | ||
+ | <math>\left( 1 - \frac{a_{k-1}}{a_k} \right) \frac{1}{\sqrt{a_k}} = | ||
+ | \frac{a_k - a_{k-1}}{a_k \sqrt{a_k}} = | ||
+ | \frac{\alpha}{(1 + k \alpha) \sqrt{1 + k \alpha}} \ge</math> | ||
− | [ | + | <math>\frac{\alpha}{\sqrt{1 + k \alpha}\ \sqrt{1 + (k+1) \alpha}\ \frac{\sqrt{1 + (k+1) \alpha} + \sqrt{1 + k \alpha}}{2}} = |
+ | \frac{2\alpha (\sqrt{1 + (k+1) \alpha} - \sqrt{1 + k \alpha})}{\sqrt{1 + k \alpha}\ \sqrt{1 + (k+1) \alpha}\ [(1 + (k+1) \alpha) - (1 + k \alpha)]} =</math> | ||
+ | |||
+ | <math>2 \left( \frac{1}{\sqrt{1 + k \alpha}} - \frac{1}{\sqrt{1 + (k+1) \alpha}} \right)</math> | ||
+ | |||
+ | Now take the sum for <math>k = 1, \cdots, n</math>: | ||
+ | |||
+ | <math>b_n = \sum_{k=1}^n \left( 1 - \frac{a_{k-1}}{a_k} \right) \frac{1}{\sqrt{a_k}} \ge | ||
+ | \sum_{k=1}^n \left( \frac{2}{\sqrt{1 + k \alpha}} - \frac{2}{\sqrt{1 + (k+1) \alpha}} \right) = | ||
+ | \frac{2}{\sqrt{1 + \alpha}} - \frac{2}{\sqrt{1 + \alpha + n \alpha}}</math> | ||
+ | |||
+ | For simplicity of writing and visualizing, let us denote <math>\epsilon = 2 - c</math>. | ||
+ | So <math>c = 2 - \epsilon</math>. We need to show that we can take <math>\alpha</math> small enough | ||
+ | and <math>n</math> large enough so that <math>2 - b_n < \epsilon</math>. | ||
+ | |||
+ | Start by choosing a value for <math>\alpha</math> small enough to make | ||
+ | <math>\frac{2}{\sqrt{1 + \alpha}} > 2 - \frac{\epsilon}{2}</math>. | ||
+ | |||
+ | This can be done since this condition amounts to | ||
+ | <math>\sqrt{1 + \alpha} < \frac{4}{4 - \epsilon}</math>, or in other words to | ||
+ | <math>\alpha < \left( \frac{4}{4 - \epsilon} \right)^2 - 1</math>. | ||
+ | |||
+ | For the chosen value of <math>\alpha</math> we now choose <math>n</math> large enough so that | ||
+ | <math>\frac{2}{\sqrt{1 + \alpha + n \alpha}} < \frac{\epsilon}{2}</math>. | ||
+ | |||
+ | This can also be done because the condition amounts to | ||
+ | <math>\sqrt{1 + \alpha + n \alpha} > \frac{4}{\epsilon}</math>, or in other words | ||
+ | <math>n > \frac{1}{\alpha}\ \left( \frac{16}{\epsilon^2} - 1 - \alpha \right)</math>. | ||
+ | |||
+ | This proves part (b) of the problem. | ||
+ | |||
+ | [Solution by pf02, November 2024] | ||
Latest revision as of 03:22, 27 November 2024
Contents
Problem
The real numbers satisfy the condition:
.
The numbers are defined by
(a) Prove that for all .
(b) given with , prove that there exist numbers with the above properties such that for large enough .
Solution
Let be the rectangle with the verticies: ; ; ; .
For all , the area of is . Therefore,
For all sequences and all , lies above the -axis, below the curve , and in between the lines and , Also, all such rectangles are disjoint.
Thus, as desired.
By choosing , where , is a Riemann sum for . Thus, .
Therefore, .
So for any , we can always select a small enough to form a sequence satisfying the above properties such that for large enough as desired.
Remarks (added by pf02, November 2024)
1. A remark about the problem: it is not a fair problem. It is not a good problem for the International Mathematical Olympiad.
The reason is that the problem is trivial for most anyone who knows a little bit of integral calculus. Taken out of its natural context, it is not trivial. The young people participating in the International Mathematical Olympiad are from an age group whose mathematical education may not have reached calculus, depending on the country they come from. Hence, the problem is more a comparison between mathematical curricula in different countries rather than problem solving ability of young people.
2. The Solution to question (b) of the problem given above is incorrect. Specifically
is incorrect. (To put it bluntly, it makes no sense!) The upper limit of the integral, depends on , so it can not be the result of a limit ! In fact, it is not even clear what is meant by .
The errors and inconsistencies just continue accumulating and building up in the remainder of the proof.
3. Below, I will give a corrected proof of part (b) of the problem, similar to some extent to the idea the author of the Solution above might have had in mind. Then, I will give a solution which uses no calculus.
Corrected Solution to Part (b) of the Problem
For simplicity of writing and visualizing, let us denote . So . We need to find a sequence so that for large enough.
We rely on the fact that is a Riemann sum for , where . The denser the points , the better the sum approximates the integral.
Since , we can find so that .
Now, we can find a set of points in the interval , such that the Riemann sum corresponding to these points is as close to the integral as we want, in particular .
This proves part (b) of the problem.
(Note that we don't have to, but we can take as suggested in the Solution. In fact, we can take and let be large enough, to make small enough, to make the Riemann sum close enough to the integral on the interval . (Here stands for the in the Solution.))
[Solution by pf02, November 2024]
Solution 2
This is a solution which does not use calculus. Taking in account that we have
Taking the sum, we get
.
This proves (a).
To prove (b), let us take , with . We do similar tricks:
Now take the sum for :
For simplicity of writing and visualizing, let us denote . So . We need to show that we can take small enough and large enough so that .
Start by choosing a value for small enough to make .
This can be done since this condition amounts to , or in other words to .
For the chosen value of we now choose large enough so that .
This can also be done because the condition amounts to , or in other words .
This proves part (b) of the problem.
[Solution by pf02, November 2024]
See also
1970 IMO (Problems) • Resources | ||
Preceded by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 4 |
All IMO Problems and Solutions |