Difference between revisions of "Barycentric coordinates"
(→Set of parallel lines) |
(→Feuerbach point of a scalene triangle) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 409: | Line 409: | ||
==Set of parallel lines== | ==Set of parallel lines== | ||
− | [[File:Set of lines small.png| | + | [[File:Set of lines small.png|380px|right]] |
Let triangle <math>\triangle ABC</math> and points <math>D</math> at the line <math>BC, E \in AC, F \in AB</math> be given. | Let triangle <math>\triangle ABC</math> and points <math>D</math> at the line <math>BC, E \in AC, F \in AB</math> be given. | ||
Line 431: | Line 431: | ||
\frac {A'O}{AO} = \frac{B'O}{BO} = \frac {C'O}{CO} = \frac{2def + df + de + ef - 1}{(1+d)(1+ e)(1+f)}.</cmath> | \frac {A'O}{AO} = \frac{B'O}{BO} = \frac {C'O}{CO} = \frac{2def + df + de + ef - 1}{(1+d)(1+ e)(1+f)}.</cmath> | ||
If <math>\frac {A'O}{AO} = 1 </math> then <math>def = d+e+f+1.</math> | If <math>\frac {A'O}{AO} = 1 </math> then <math>def = d+e+f+1.</math> | ||
− | [[File:Set of lines small С.png| | + | [[File:Set of lines small С.png|330px|right]] |
<i><b>Corollary</b></i> | <i><b>Corollary</b></i> | ||
Let points <math>D, E,</math> and <math>F</math> lie at the lines <math>BC, AC,</math> and <math>AB.</math> | Let points <math>D, E,</math> and <math>F</math> lie at the lines <math>BC, AC,</math> and <math>AB.</math> | ||
− | Denote circle <math>\omega = \odot DEF, D' = \omega \cap BC, E' = \omega \cap AC, F' = \omega \cap AB.</ | + | Denote circle <math>\omega = \odot DEF,</math> |
+ | <cmath>D' = \omega \cap BC, E' = \omega \cap AC, F' = \omega \cap AB.</cmath> | ||
Let <math>ED' || DE', D'F' || E'F, DF' || FE,</math> | Let <math>ED' || DE', D'F' || E'F, DF' || FE,</math> | ||
Line 446: | Line 447: | ||
The proof contain calculations started from <math>\triangle A'B'C'</math> and finished at <math>\triangle ABC.</math> | The proof contain calculations started from <math>\triangle A'B'C'</math> and finished at <math>\triangle ABC.</math> | ||
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | ==Feuerbach point of a scalene triangle== | ||
+ | The Feuerbach point of a scalene triangle lies on one of its bisectors. Prove that the angle corresponding to this bisector is <math>60^\circ.</math> | ||
+ | |||
+ | <i><b>Proof</b></i> | ||
+ | |||
+ | Denote <math>ABC -</math> given triangle, <math>a = BC,b = AC,c = AB, I -</math> the incenter, <math>F \in BI</math> - the Feuerbach point. | ||
+ | |||
+ | The barycentric coordinates of point | ||
+ | <cmath>F = \left ((b+c-a)(b-c)^2 : (a+c-b)(a-c)^2 : (a+b-c)(a-b)^2 \right ).</cmath> | ||
+ | |||
+ | <cmath>F \in BI \implies a \cdot (a+b-c)(a-b)^2 = c \cdot (b+c-a)(b-c)^2 \implies</cmath> | ||
+ | <cmath>(a - c) \cdot (a + c - b) \cdot (a^2- b^2 - ac + c^2) = 0 \implies </cmath> | ||
+ | <cmath>b^2 = c^2 + a^2 - ac \implies \angle ABC = 60^\circ.</cmath> | ||
+ | Another proof [[Feuerbach point | Scalene triangle with angle 60^\circ]] . | ||
'''vladimir.shelomovskii@gmail.com, vvsss''' | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
==Small Pascal's theorem== | ==Small Pascal's theorem== | ||
− | [[File:PascalS Lemoine.png| | + | [[File:PascalS Lemoine.png|350px|right]] |
− | [[File:Pascal S Lemoine E.png| | + | [[File:Pascal S Lemoine E.png|330px|right]] |
Let <math>\triangle ABC</math> and point <math>P</math> be given. Let <math>\Omega</math> be the circumcircle of <math>\triangle ABC,</math> | Let <math>\triangle ABC</math> and point <math>P</math> be given. Let <math>\Omega</math> be the circumcircle of <math>\triangle ABC,</math> |
Latest revision as of 13:42, 12 December 2024
This can be used in mass points. http://mathworld.wolfram.com/BarycentricCoordinates.html This article is a stub. Help us out by expanding it.
Barycentric coordinates are triples of numbers corresponding to masses placed at the vertices of a reference triangle . These masses then determine a point , which is the geometric centroid of the three masses and is identified with coordinates . The vertices of the triangle are given by , , and . Barycentric coordinates were discovered by Möbius in 1827 (Coxeter 1969, p. 217; Fauvel et al. 1993).
The Central NC Math Group published a lecture concerning this topic at https://www.youtube.com/watch?v=KQim7-wrwL0 if you would like to view it.
Contents
- 1 Useful formulas
- 2 Product of isogonal segments
- 3 Ratio of isogonal segments
- 4 Point on incircle
- 5 Crossing point
- 6 Fixed point on circumcircle
- 7 Two pare isogonal points
- 8 Collinearity for two pares of isogonal points
- 9 Points on bisectors
- 10 Crosspoint of median and set of secants
- 11 Set of lines in triangle
- 12 Set of parallel lines
- 13 Feuerbach point of a scalene triangle
- 14 Small Pascal's theorem
Useful formulas
Notation
Let the triangle be a given triangle, be the lengths of
We use the following Conway symbols:
is semiperimeter, is twice the area of
where is the inradius, is the circumradius,
is the cosine of the Brocard angle,
Main
For any point in the plane there are barycentric coordinates(BC): The normalized (absolute) barycentric coordinates NBC satisfy the condition they are uniquely determined: Triangle vertices
The barycentric coordinates of a point do not change under an affine transformation.
Lines
The straight line in barycentric coordinates (BC) is given by the equation
The lines given in the BC by the equations and intersect at the point
These lines are parallel iff
The sideline contains the points its equation is
The line has equation it intersects the sideline at the point
Iff then
Let NBC of points and be
Then the square of distance The equation of bisector of is: Nagel line :
Circles
Any circle is given by an equation of the form
Circumcircle contains the points the equation of this circle:
The incircle contains the tangent points of the incircle with the sides:
The equation of the incircle is where
The radical axis of two circles given by equations of this form is: Conjugate
The point is isotomically conjugate with respect to with the point
The point is isogonally conjugate with respect to with the point
The point is isocircular conjugate with respect to with the point
Triangle centers
The median centroid is
The simmedian point is isogonally conjugate with respect to with the point
The bisector the incenter is
The excenters are
The circumcenter lies at the intersection of the bisectors and its BC coordinates
The orthocenter is isogonally conjugate with respect to with the point
Let Nagel point lies at line
The Gergonne point is the isotomic conjugate of the Nagel point, so
vladimir.shelomovskii@gmail.com, vvsss
Product of isogonal segments
Let triangle the circumcircle and isogonals and of the be given. Let point and be the isogonal conjugate of a point and with respect to Prove that
Proof
We fixed and the point So isogonal is fixed.
Denote
We need to prove that do not depends from
Line has the equation
To find the point we solve the equation:
We use the formula for isogonal cobnjugate point and get and then
To find the point we solve the equation: We calculate distances (using NBC) and get: where has sufficiently big formula.
Therefore vladimir.shelomovskii@gmail.com, vvsss
Ratio of isogonal segments
Let triangle and point be given. Denote the isogonal conjugate of a point with respect to Prove that
Proof
We use the formula for isogonal conjugate point and get
vladimir.shelomovskii@gmail.com, vvsss
Point on incircle
Let triangle be given. Denote the incircle the incenter , the Spieker center
Let be the point corresponding to the condition is symmetric with respect midpoint
Symilarly denote
Prove that point lies on
Proof We calculate distances (using NBC) and solve the system of equations:
We know one solution of this system (point D), so we get linear equation and get: Similarly Therefore We calculate the length of the segment and get
The author learned about the existence of such a point from Leonid Shatunov in August 2023.
vladimir.shelomovskii@gmail.com, vvsss
Crossing point
Let triangle and points and be given. Let point be the isogonal conjugate of a point with respect to a triangle Let be an arbitrary point at Prove that lies on
This configuration can be used as a straight-line mechanism since it allows to create a mechanism that converts the rotational motion of a point Z to perfect straight-line motion of the X point or vice versa. Of course, we need to use the prismatic joint at the points and
Proof
We use the barycentric coordinates: We get the equations for some lines:
Line is
line is
line is
line is
line is
We get the equations for some points:
point is
point is
point is
Any circle is given by an equation of the form We find the coefficients for the circles (these formulas are big), but can be used for calculations of the crossing points: We get the equations for some lines and :
We get the equation for the point Let point be the isogonal conjugate of a point with respect to a triangle The sum of coordinates is equal zero, so is in infinity, therefore the point lies on
vladimir.shelomovskii@gmail.com, vvsss
Fixed point on circumcircle
Let triangle point on circumcircle and point be given. Point lies on point be the isogonal conjugate of a point with respect to a triangle
Prove that is fixed point and not depends from position of
Proof
Denote the coordinates of the points The line is
The line is We find the circle and get the point depends only from points and
vladimir.shelomovskii@gmail.com, vvsss
Two pare isogonal points
Let triangle and points and (points do not lie on sidelines) be given.
Let point and be the isogonal conjugate of a point and with respect to a triangle
Denote
Prove that and lies on
Proof
The line is The line is Denote is the isogonal conjugate of a point with respect to If we use NBC, we get If we use NBC, we get
vladimir.shelomovskii@gmail.com, vvsss
Collinearity for two pares of isogonal points
Let triangle and points and be given. Let point and be the isogonal conjugate of the points and with respect to a triangle
Denote is the point isogonal conjugate to line with respect Isogonal_bijection_lines_and_points
Prove that points and are collinear.
Proof
After the simple calculations one can get:
We use the normalized barycentric coordinates NBC and get line in the form of: We check the condition of collinearity for points and and finishing the proof.
vladimir.shelomovskii@gmail.com, vvsss
Points on bisectors
Let a triangle be given.
Let segments and be the bisectors of
The lines and meet circumcircle ) at points respectively. is the midpoint Denote
We will find barycentric coordinates of the points and length of the segments. Line is line is line is
Circle is
Line is
Point
Line is
Point
Point
Some simple formulas: Circumcenter
Tangent is
Line is is the midpoint
vladimir.shelomovskii@gmail.com, vvsss
Crosspoint of median and set of secants
Triangle and point be given. The incircle of touches side at point Point is symmetrical to point with respect midpoint of The common points of segments and with form a convex quadrilateral
Prove that point lies on
Proof
Denote Line line
We solve the system of these equations and get: We find the lines and we solve the system of equations for this lines and get: This point lies at the line Point lies at line and
Corollary
Denote Then
vladimir.shelomovskii@gmail.com, vvsss
Set of lines in triangle
Let triangle and points at the line be given.
Denote point in such that Similarly,
Prove that lines and are concurrent.
Proof
Let
Then
Point lies at lines and
vladimir.shelomovskii@gmail.com, vvsss
Set of parallel lines
Let triangle and points at the line be given.
Denote
Let be the point such that
Similarly,
Prove that lines and are concurrent.
Find the condition that
Proof
One can get If then
Corollary
Let points and lie at the lines and
Denote circle
Let
Then lines and are concurrent.
WLOG, situation is shown on diagram.
The proof contain calculations started from and finished at
vladimir.shelomovskii@gmail.com, vvsss
Feuerbach point of a scalene triangle
The Feuerbach point of a scalene triangle lies on one of its bisectors. Prove that the angle corresponding to this bisector is
Proof
Denote given triangle, the incenter, - the Feuerbach point.
The barycentric coordinates of point
Another proof Scalene triangle with angle 60^\circ .
vladimir.shelomovskii@gmail.com, vvsss
Small Pascal's theorem
Let and point be given. Let be the circumcircle of Let the tangent line to at point cross line at point Similarly denote points and
Prove that the points and are collinear.
Proof
1. Simplest case, is the Lemoine point,
The equation of is
Line is The line is
Similarly,
The line is
2. Simple case, is one of the external Lemoine point,
This point is the crosspoint of the tangent lines to in points and so The line is
Similarly,
The line is
Similarly, if then the line is
If then the line is
These three lines intersect in pairs at points and of the line of case 1.
3. Common case. Denote the coordinates of the point The equation of is
Line is
Similarly,
The tangent line to at is
The line is
Similarly, The line is
vladimir.shelomovskii@gmail.com, vvsss