|
(Tag: Redirect target changed) |
(8 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | ==Problem 10==
| + | #redirect[[2024 AMC 10B Problems/Problem 15]] |
− | | |
− | A list of 9 real numbers consists of <math>1</math>, <math>2.2 </math>, <math>3.2 </math>, <math>5.2 </math>, <math>6.2 </math>, <math>7</math>, as well as <math>x, y,z</math> with <math>x\leq y\leq z</math>. The range of the list is <math>7</math>, and the mean and median are both positive integers. How many ordered triples <math>(x,y,z)</math> are possible?
| |
− | | |
− | <math>\textbf{(A) }1 \qquad\textbf{(B) }2 \qquad\textbf{(C) }3 \qquad\textbf{(D) }4 \qquad\textbf{(E) \text{infinitely many}}\qquad</math>
| |
− | | |
− | ==Solution==
| |
− | | |
− | It is easiest to do casework on the range. We have four possible cases:
| |
− | <math>x<1</math>, <math>z<7</math>
| |
− | | |
− | <math>x>1</math>, <math>z<7</math>
| |
− | | |
− | <math>x<1</math>, <math>z>7</math>
| |
− | | |
− | <math>x>1</math>, <math>z>7</math>
| |
− | | |
− | These encapsulate all possible values of <math>x</math> and <math>z</math> we can choose, so we're not leaving anything out. As we'll see, the problem will become simpler this way. Since we want integer mean, first note the sum of the values given to be <math>24.8</math>: when we add <math>x,y,z</math>, it must be a multiple of <math>9</math> to yield an integer mean. Also remember that the median of an increasing list of <math>9</math> numbers is the fifth number.
| |
− | | |
− | <math>\textbf{Case 1:}</math>
| |
− | | |
− | Since <math>x<1</math>, <math>z<7</math>, <math>x</math> must be the minimum of this list of numbers and <math>7</math> is the max: so the range is <math>7-x</math>. This must be equal to <math>7</math>, so <math>x=0</math>. Now we try to make the median an integer.
| |
− | With <math>x=0</math>, the fifth smallest number currently is <math>5.2</math>, which is clearly not an integer. But if we stick <math>y</math> or <math>z</math> in between <math>3.2</math> and <math>5.2</math>, then the median will be an integer. So let one of <math>y,z</math> be <math>4</math>: then the sum of all the numbers we have so far is <math>28.8</math>. To make this a multiple of <math>9</math>, the last number has to be <math>7.2</math> to add up to <math>36</math>. However, we said that <math>z<7</math>, so this violates the bounds of this case. So then we set <math>y=5</math>, so our sum is <math>29.9</math>: then <math>z=36-29.9 = 6.2</math>. Here everything checks out, so for this case there is one solution: <math>(0,5,6.2)</math>.
| |
− | | |
− | <math>\textbf{Case 2:}</math>
| |
− | | |
− | ~KingRavi
| |