Difference between revisions of "2024 AMC 8 Problems/Problem 1"

m (Problem 1)
(Undo revision 242866 by Aw13255 (talk) Undo Spam)
(Tag: Undo)
 
(54 intermediate revisions by 18 users not shown)
Line 1: Line 1:
==Problem 1==
+
==Problem==
What is the ones digit of: <cmath>222{,}222-22{,}222-2{,}222-222-22-2?</cmath>
+
What is the last digit of: <cmath>222{,}222-22{,}222-2{,}222-222-22-2?</cmath>
<math>\textbf{(A) } 0\qquad\textbf{(B) } 2\qquad\textbf{(C) } 4\qquad\textbf{(D) } 6\qquad\textbf{(E) } 8</math>
+
<math>\textbf{(A) } 0\qquad\textbf{(B) } 2\qquad\textbf{(C) } 4\qquad\textbf{(D) } 8\qquad\textbf{(E) } 10</math>
  
 
==Solution 1==
 
==Solution 1==
We can rewrite the expression as <cmath>222,222-(22,222+2,222+222+22+2).</cmath>
+
We can rewrite the expression as <math>222,222-(22,222+2,222+222+22+2)</math>. We note that the units digit of <math>22,222+2,222+222+22+2</math> is <math>0</math> because all the units digits of the five numbers are <math>2</math> and <math>5\cdot2=10</math>, which has a units digit of <math>0</math>. Now, we have something with a units digit of <math>0</math> subtracted from <math>222,222</math>, and so the units digit of this expression is <math>\boxed{\textbf{(B) } 2}</math>.
 
We note that the units digit of the addition is <math>0</math> because all the units digits of the five numbers are <math>2</math> and <math>5*2=10</math>, which has a units digit of <math>0</math>.
 
 
Now, we have something with a units digit of <math>0</math> subtracted from <math>222,222</math>. The units digit of this expression is obviously <math>2</math>, and we get <math>\boxed{B}</math> as our answer.
 
  
 
==Solution 2==
 
==Solution 2==
 
+
<cmath>222,222-22,222 = 200,000</cmath>
<math>222,222-22,222 = 200,000</math>
+
<cmath>200,000 - 2,222 = 197778</cmath>
<math>200,000 - 2,222 = 197778</math>
+
<cmath>197778 - 222 = 197556</cmath>
<math>197778 - 222 = 197556</math>
+
<cmath>197556 - 22 = 197534</cmath>
<math>197556 - 22 = 197534</math>
+
<cmath>197534 - 2 = 197532</cmath>
<math>197534 - 2 = 1957532
 
</math>
 
 
So our answer is <math>\boxed{\textbf{(B) } 2}</math>.
 
So our answer is <math>\boxed{\textbf{(B) } 2}</math>.
  
 
==Solution 3==
 
==Solution 3==
 +
We only care about the units digits. Thus, <math>2-2</math> ends in <math>0</math>, <math>0-2</math> after regrouping(10-2) ends in <math>8</math>, <math>8-2</math> ends in <math>6</math>, <math>6-2</math> ends in <math>4</math>, and <math>4-2</math> ends in <math>\boxed{\textbf{(B) } 2}</math>.
 +
 +
==Solution 4==
 +
We just take the units digit of each and subtract, adding an extra ten to the first number so we don't get a negative number:
 +
<cmath>(12-2)-(2+2+2+2)=10-8=\boxed{\textbf{(B) } 2}</cmath>
  
We only care about the unit's digits.
+
== Solution 5 ==
 +
<cmath>222{,}222-22{,}222-2{,}222-222-22-2\equiv2-2-2-2-2\equiv-8\equiv\boxed{\textbf{(B) } 2}\pmod{10}</cmath>
  
Thus, <math>2-2</math> ends in <math>0</math>, <math>0-2</math> after regrouping(10-2) ends in <math>8</math>, <math>8-2</math> ends in <math>6</math>, <math>6-2</math> ends in <math>4</math>, and <math>4-2</math> ends in  <math>\boxed{\textbf{(B) } 2}</math>.
 
  
-unknown
+
== Solution 6==
  
minor edits by Fireball9746
+
We can ignore the other digits and just do <math>22-2-2-2-2-2</math>. Because you are subtracting five <math>2s</math> and <math>2\cdot5 = 10</math>, you subtract <math>10</math> from <math>22</math>. This gives us 12, so the last digit is <math>\boxed{\textbf{(B) } 2}</math>.
  
==Solution 4==
+
== Video Solution 1 (Detailed Explanation) 🚀⚡📊 ==
 +
Youtube Link ⬇️
 +
 
 +
https://youtu.be/jqsbMWhTYRg
  
We just take the units digit of each and subtract, or you can do it this way by adding an extra ten to the first number (so we don't get a negative number):
+
~ ChillGuyDoesMath :)
<cmath>(12-2)-(2+2+2+2)=10-8=2</cmath>
 
Thus, we get the answer <math>\boxed{(B)}</math>
 
  
==Video Solution (A Clever Explanation You’ll Get Instantly)==
+
== Video by MathTalks_Now ==
https://youtu.be/5ZIFnqymdDQ?si=IbHepN2ytt7N23pl&t=53
 
  
~hsnacademy
+
https://www.youtube.com/watch?v=crn37TRMLv4
  
==Video Solution 1 (Quick and Easy!)==
+
-rc1219
https://youtu.be/Ol1seWX0xHY
 
  
~Education, the Study of Everything
+
==Video Solution by Central Valley Math Circle (Goes through full thought process)==
 +
https://youtu.be/-XcShDyuZIo
  
==Video Solution (easy to understand)==
+
==Video Solution 2 (MATH-X)==
 
https://youtu.be/BaE00H2SHQM?si=O0O0g7qq9AbhQN9I&t=130
 
https://youtu.be/BaE00H2SHQM?si=O0O0g7qq9AbhQN9I&t=130
  
~Math-X
+
==Video Solution 3 (A Clever Explanation You’ll Get Instantly)==
 +
https://youtu.be/5ZIFnqymdDQ?si=IbHepN2ytt7N23pl&t=53
 +
 
 +
==Video Solution  4 (Quick and Easy)==
 +
https://youtu.be/Ol1seWX0xHY
  
==Video Solution by Interstigation==
+
==Video Solution 5 Interstigation==
 
https://youtu.be/ktzijuZtDas&t=36
 
https://youtu.be/ktzijuZtDas&t=36
  
==Video Solution by Daily Dose of Math==
+
==Video Solution 6 Daily Dose of Math==
 
 
 
https://youtu.be/bSPWqeNO11M?si=HIzlxPjMfvGM5lxR
 
https://youtu.be/bSPWqeNO11M?si=HIzlxPjMfvGM5lxR
  
~Thesmartgreekmathdude
+
==Video Solution 7 Dr. David==
 +
https://youtu.be/RzPadkHd3Yc
  
==Video Solution by Dr. David==
+
==Video Solution 8 WhyMath==
 
+
https://youtu.be/i4mcj3jRTxM
https://youtu.be/RzPadkHd3Yc
 
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2024|before=First Problem|num-a=2}}
 
{{AMC8 box|year=2024|before=First Problem|num-a=2}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 08:46, 16 February 2025

Problem

What is the last digit of: \[222{,}222-22{,}222-2{,}222-222-22-2?\] $\textbf{(A) } 0\qquad\textbf{(B) } 2\qquad\textbf{(C) } 4\qquad\textbf{(D) } 8\qquad\textbf{(E) } 10$

Solution 1

We can rewrite the expression as $222,222-(22,222+2,222+222+22+2)$. We note that the units digit of $22,222+2,222+222+22+2$ is $0$ because all the units digits of the five numbers are $2$ and $5\cdot2=10$, which has a units digit of $0$. Now, we have something with a units digit of $0$ subtracted from $222,222$, and so the units digit of this expression is $\boxed{\textbf{(B) } 2}$.

Solution 2

\[222,222-22,222 = 200,000\] \[200,000 - 2,222 = 197778\] \[197778 - 222 = 197556\] \[197556 - 22 = 197534\] \[197534 - 2 = 197532\] So our answer is $\boxed{\textbf{(B) } 2}$.

Solution 3

We only care about the units digits. Thus, $2-2$ ends in $0$, $0-2$ after regrouping(10-2) ends in $8$, $8-2$ ends in $6$, $6-2$ ends in $4$, and $4-2$ ends in $\boxed{\textbf{(B) } 2}$.

Solution 4

We just take the units digit of each and subtract, adding an extra ten to the first number so we don't get a negative number: \[(12-2)-(2+2+2+2)=10-8=\boxed{\textbf{(B) } 2}\]

Solution 5

\[222{,}222-22{,}222-2{,}222-222-22-2\equiv2-2-2-2-2\equiv-8\equiv\boxed{\textbf{(B) } 2}\pmod{10}\]


Solution 6

We can ignore the other digits and just do $22-2-2-2-2-2$. Because you are subtracting five $2s$ and $2\cdot5 = 10$, you subtract $10$ from $22$. This gives us 12, so the last digit is $\boxed{\textbf{(B) } 2}$.

Video Solution 1 (Detailed Explanation) 🚀⚡📊

Youtube Link ⬇️

https://youtu.be/jqsbMWhTYRg

~ ChillGuyDoesMath :)

Video by MathTalks_Now

https://www.youtube.com/watch?v=crn37TRMLv4

-rc1219

Video Solution by Central Valley Math Circle (Goes through full thought process)

https://youtu.be/-XcShDyuZIo

Video Solution 2 (MATH-X)

https://youtu.be/BaE00H2SHQM?si=O0O0g7qq9AbhQN9I&t=130

Video Solution 3 (A Clever Explanation You’ll Get Instantly)

https://youtu.be/5ZIFnqymdDQ?si=IbHepN2ytt7N23pl&t=53

Video Solution 4 (Quick and Easy)

https://youtu.be/Ol1seWX0xHY

Video Solution 5 Interstigation

https://youtu.be/ktzijuZtDas&t=36

Video Solution 6 Daily Dose of Math

https://youtu.be/bSPWqeNO11M?si=HIzlxPjMfvGM5lxR

Video Solution 7 Dr. David

https://youtu.be/RzPadkHd3Yc

Video Solution 8 WhyMath

https://youtu.be/i4mcj3jRTxM

See Also

2024 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png