Difference between revisions of "2024 AMC 10A Problems"
MRENTHUSIASM (talk | contribs) (→Problem 4) |
m (→Problem 1) |
||
(81 intermediate revisions by 25 users not shown) | |||
Line 3: | Line 3: | ||
==Problem 1== | ==Problem 1== | ||
− | What is the value of <math> | + | What is the value of <math>sin 18 when faced with an 1984\cdot101435-99\cdot4310101?</math> |
<math>\textbf{(A)}~2\qquad\textbf{(B)}~20\qquad\textbf{(C)}~200\qquad\textbf{(D)}~202\qquad\textbf{(E)}~2020</math> | <math>\textbf{(A)}~2\qquad\textbf{(B)}~20\qquad\textbf{(C)}~200\qquad\textbf{(D)}~202\qquad\textbf{(E)}~2020</math> | ||
Line 21: | Line 21: | ||
What is the sum of the digits of the smallest prime that can be written as a sum of <math>5</math> distinct primes? | What is the sum of the digits of the smallest prime that can be written as a sum of <math>5</math> distinct primes? | ||
− | <math>\textbf{(A) }5\qquad\textbf{(B) }7\qquad\textbf{(C) } | + | <math>\textbf{(A) }5\qquad\textbf{(B) }7\qquad\textbf{(C) }8\qquad\textbf{(D) }10\qquad\textbf{(E) }13</math> |
[[2024 AMC 10A Problems/Problem 3|Solution]] | [[2024 AMC 10A Problems/Problem 3|Solution]] | ||
Line 37: | Line 37: | ||
What is the least value of <math>n</math> such that <math>n!</math> is a multiple of <math>2024</math>? | What is the least value of <math>n</math> such that <math>n!</math> is a multiple of <math>2024</math>? | ||
− | <math>\textbf{(A)} 11\qquad\textbf{(B)} 21\qquad\textbf{(C)} 22\qquad\textbf{(D)} 23\qquad\textbf{(E)} 253</math> | + | <math>\textbf{(A) } 11\qquad\textbf{(B) } 21\qquad\textbf{(C) } 22\qquad\textbf{(D) } 23\qquad\textbf{(E) } 253</math> |
[[2024 AMC 10A Problems/Problem 5|Solution]] | [[2024 AMC 10A Problems/Problem 5|Solution]] | ||
Line 43: | Line 43: | ||
==Problem 6== | ==Problem 6== | ||
− | + | What is the minimum number of successive swaps of adjacent letters in the string <math>ABCDEF</math> that are needed to change the string to <math>FEDCBA?</math> (For example, <math>3</math> swaps are required to change <math>ABC</math> to <math>CBA;</math> one such sequence of swaps is | |
+ | <math>ABC\to BAC\to BCA\to CBA.</math>) | ||
− | <math>\textbf{(A) }\qquad\textbf{(B) }\qquad\textbf{(C) }\qquad\textbf{(D) }\qquad\textbf{(E) }</math> | + | <math>\textbf{(A)}~6\qquad\textbf{(B)}~10\qquad\textbf{(C)}~12\qquad\textbf{(D)}~15\qquad\textbf{(E)}~24</math> |
[[2024 AMC 10A Problems/Problem 6|Solution]] | [[2024 AMC 10A Problems/Problem 6|Solution]] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Problem 8== | ==Problem 8== | ||
− | + | Amy, Bomani, Charlie, and Daria work in a chocolate factory. On Monday Amy, Bomani, and Charlie started working at <math>1:00 PM</math> and were able to pack <math>4</math>, <math>3</math>, and <math>3</math> packages, respectively, every <math>3</math> minutes. At some later time, Daria joined the group, and Daria was able to pack <math>5</math> packages every <math>4</math> minutes. Together, they finished packing <math>450</math> packages at exactly <math>2:45 PM</math>. At what time did Daria join the group? | |
− | <math>\textbf{(A) }\qquad\textbf{(B) }\qquad\textbf{(C) }\qquad\textbf{(D) }\qquad\textbf{(E) }</math> | + | <math>\textbf{(A) }1:25\text{ PM}\qquad\textbf{(B) }1:35\text{ PM}\qquad\textbf{(C) }1:45\text{ PM}\qquad\textbf{(D) }1:55\text{ PM}\qquad\textbf{(E) }2:05\text{ PM}</math> |
[[2024 AMC 10A Problems/Problem 8|Solution]] | [[2024 AMC 10A Problems/Problem 8|Solution]] | ||
Line 68: | Line 60: | ||
==Problem 9== | ==Problem 9== | ||
− | In how many ways can 6 juniors and 6 seniors form 3 disjoint teams of 4 people so | + | In how many ways can <math>6</math> juniors and <math>6</math> seniors form <math>3</math> disjoint teams of <math>4</math> people so |
− | that each team has 2 juniors and 2 seniors? | + | that each team has <math>2</math> juniors and <math>2</math> seniors? |
<math>\textbf{(A) }720\qquad\textbf{(B) }1350\qquad\textbf{(C) }2700\qquad\textbf{(D) }3280\qquad\textbf{(E) }8100</math> | <math>\textbf{(A) }720\qquad\textbf{(B) }1350\qquad\textbf{(C) }2700\qquad\textbf{(D) }3280\qquad\textbf{(E) }8100</math> | ||
Line 77: | Line 69: | ||
==Problem 10== | ==Problem 10== | ||
− | + | Consider the following operation. Given a positive integer <math>n</math>, if <math>n</math> is a multiple of <math>3</math>, then you replace <math>n</math> by <math>\frac{n}{3}</math>. If <math>n</math> is not a multiple of <math>3</math>, then you replace <math>n</math> by <math>n+10</math>. For example, beginning with <math>n=4</math>, this procedure gives <math>4\to14\to24\to8\to18\to6\to2\to12\to\cdots</math>. Suppose you start with <math>n=100</math>. What value results if you perform this operation exactly <math>100</math> times? | |
− | + | ||
− | <math>\textbf{(A) }\qquad\textbf{(B) }\qquad\textbf{(C) }\qquad\textbf{(D) }\qquad\textbf{(E) }</math> | + | <math>\textbf{(A) }10\qquad\textbf{(B) }20\qquad\textbf{(C) }30\qquad\textbf{(D) }40\qquad\textbf{(E) }50</math> |
[[2024 AMC 10A Problems/Problem 10|Solution]] | [[2024 AMC 10A Problems/Problem 10|Solution]] | ||
Line 85: | Line 77: | ||
==Problem 11== | ==Problem 11== | ||
− | + | How many ordered pairs of integers <math>(m, n)</math> satisfy <math>\sqrt{n^2 - 49} = m</math>? | |
− | <math>\textbf{(A) }\qquad\textbf{(B) }\qquad\textbf{(C) }\qquad\textbf{(D) }\qquad\textbf{(E) }</math> | + | <math>\textbf{(A)}~1\qquad\textbf{(B)}~2\qquad\textbf{(C)}~3\qquad\textbf{(D)}~4\qquad\textbf{(E)}</math> Infinitely many |
[[2024 AMC 10A Problems/Problem 11|Solution]] | [[2024 AMC 10A Problems/Problem 11|Solution]] | ||
Line 93: | Line 85: | ||
==Problem 12== | ==Problem 12== | ||
− | + | Zelda played the ''Adventures of Math'' game on August 1 and scored <math>1,700</math> points. She continued to play daily over the next <math>5</math> days. The bar chart below shows the daily change in her score compared to the day before. (For example, Zelda's score on August 2 was <math>1,700 + 80 = 1,780</math> points.) What was Zelda's average score in points over the <math>6</math> days?[[File:Screenshot_2024-11-08_1.51.51_PM.png]] | |
− | <math>\textbf{(A) }\qquad\textbf{(B) }\qquad\textbf{(C) }\qquad\textbf{(D) }\qquad\textbf{(E) }</math> | + | <math>\textbf{(A)}~1700\qquad\textbf{(B)}~1702\qquad\textbf{(C)}~1703\qquad\textbf{(D)}~1713\qquad\textbf{(E)}~1715</math> |
[[2024 AMC 10A Problems/Problem 12|Solution]] | [[2024 AMC 10A Problems/Problem 12|Solution]] | ||
==Problem 13== | ==Problem 13== | ||
+ | Two transformations are said to commute if applying the first followed by the second | ||
+ | gives the same result as applying the second followed by the first. Consider these | ||
+ | four transformations of the coordinate plane: | ||
− | + | * a translation <math>2</math> units to the right, | |
− | <math>\textbf{(A) }\qquad\textbf{(B) }\qquad\textbf{(C) }\qquad\textbf{(D) }\qquad\textbf{(E) }</math> | + | * a <math>90^{\circ}</math>-rotation counterclockwise about the origin, |
+ | |||
+ | * a reflection across the <math>x</math>-axis, and | ||
+ | |||
+ | * a dilation centered at the origin with scale factor <math>2.</math> | ||
+ | |||
+ | Of the <math>6</math> pairs of distinct transformations from this list, how many commute? | ||
+ | |||
+ | <math>\textbf{(A)}~1\qquad\textbf{(B)}~2\qquad\textbf{(C)}~3\qquad\textbf{(D)}~4\qquad\textbf{(E)}~5</math> | ||
[[2024 AMC 10A Problems/Problem 13|Solution]] | [[2024 AMC 10A Problems/Problem 13|Solution]] | ||
Line 109: | Line 112: | ||
==Problem 14== | ==Problem 14== | ||
− | + | One side of an equilateral triangle of height <math>24</math> lies on line <math>\ell</math>. A circle of radius <math>12</math> is tangent to line <math>\ell</math> and is externally tangent to the triangle. The area of the region exterior to the triangle and the circle and bounded by the triangle, the circle, and line <math>\ell</math> can be written as <math>a \sqrt{b} - c \pi</math>, where <math>a</math>, <math>b</math>, and <math>c</math> are positive integers and <math>b</math> is not divisible by the square of any prime. What is <math>a + b + c</math>? | |
− | <math>\textbf{(A) }\qquad\textbf{(B) }\qquad\textbf{(C) }\qquad\textbf{(D) }\qquad\textbf{(E) }</math> | + | <math>\textbf{(A)}~72\qquad\textbf{(B)}~73\qquad\textbf{(C)}~74\qquad\textbf{(D)}~75\qquad\textbf{(E)}~76</math> |
[[2024 AMC 10A Problems/Problem 14|Solution]] | [[2024 AMC 10A Problems/Problem 14|Solution]] | ||
Line 117: | Line 120: | ||
==Problem 15== | ==Problem 15== | ||
− | + | Let <math>M</math> be the greatest integer such that both <math>M+1213</math> and <math>M+3773</math> are perfect squares. What is the units digit of <math>M</math>? | |
− | <math>\textbf{(A) }\qquad\textbf{(B) }\qquad\textbf{(C) }\qquad\textbf{(D) }\qquad\textbf{(E) }</math> | + | <math>\textbf{(A) }1\qquad\textbf{(B) }2\qquad\textbf{(C) }3\qquad\textbf{(D) }6\qquad\textbf{(E) }8</math> |
[[2024 AMC 10A Problems/Problem 15|Solution]] | [[2024 AMC 10A Problems/Problem 15|Solution]] | ||
Line 125: | Line 128: | ||
==Problem 16== | ==Problem 16== | ||
− | + | All of the rectangles in the figure below, which is drawn to scale, are similar to the enclosing rectangle. Each number represents the area of the rectangle. What is length <math>AB</math>? <math>\newline</math> | |
− | + | [[File:Screenshot 2024-11-08 2.08.49 PM.png]] | |
− | <math>\textbf{(A) }\qquad\textbf{(B) }\qquad\textbf{(C) }\qquad\textbf{(D) }\qquad\textbf{(E) }</math> | + | <math>\textbf{(A) }4+4\sqrt5\qquad\textbf{(B) }10\sqrt2\qquad\textbf{(C) }5+5\sqrt5\qquad\textbf{(D) }10\sqrt[4]{8}\qquad\textbf{(E) }20</math> |
[[2024 AMC 10A Problems/Problem 16|Solution]] | [[2024 AMC 10A Problems/Problem 16|Solution]] | ||
Line 133: | Line 136: | ||
==Problem 17== | ==Problem 17== | ||
− | + | Two teams are in a best-two-out-of-three playoff: the teams will play at most <math>3</math> games, and the winner of the playoff is the first team to win <math>2</math> games. The first game is played on Team A's home field, and the remaining games are played on Team B's home field. Team A has a <math>\frac{2}{3}</math> chance of winning at home, and its probability of winning when playing away from home is <math>p</math>. Outcomes of the games are independent. The probability that Team A wins the playoff is <math>\frac{1}{2}</math>. Then <math>p</math> can be written in the form <math>\frac{1}{2}(m - \sqrt{n})</math>, where <math>m</math> and <math>n</math> are positive integers. What is <math>m+n</math>? | |
− | <math>\textbf{(A) }\qquad\textbf{(B) }\qquad\textbf{(C) }\qquad\textbf{(D) }\qquad\textbf{(E) }</math> | + | <math>\textbf{(A)}~10\qquad\textbf{(B)}~11\qquad\textbf{(C)}~12\qquad\textbf{(D)}~13\qquad\textbf{(E)}~14</math> |
[[2024 AMC 10A Problems/Problem 17|Solution]] | [[2024 AMC 10A Problems/Problem 17|Solution]] | ||
Line 141: | Line 144: | ||
==Problem 18== | ==Problem 18== | ||
− | + | There are exactly <math>K</math> positive integers <math>5 \leq b \leq 2024</math> such that the base-<math>b</math> integer <math>2024_{b}</math> is divisible by <math>16</math>(where <math>16</math> is in base ten). What is the sum of the digits of <math>K</math>? | |
− | <math>\textbf{(A) }\qquad\textbf{(B) }\qquad\textbf{(C) }\qquad\textbf{(D) }\qquad\textbf{(E) }</math> | + | <math>\textbf{(A)}~16\qquad\textbf{(B)}~17\qquad\textbf{(C)}~18\qquad\textbf{(D)}~20\qquad\textbf{(E)}~21</math> |
[[2024 AMC 10A Problems/Problem 18|Solution]] | [[2024 AMC 10A Problems/Problem 18|Solution]] | ||
Line 149: | Line 152: | ||
==Problem 19== | ==Problem 19== | ||
− | + | The first three terms of a geometric sequence are the integers <math>a, 720</math> and <math>b</math>, where <math>a < 720 < b</math>. What is the sum of the digits of the least possible value of <math>b</math>? | |
− | <math>\textbf{(A) }\qquad\textbf{(B) }\qquad\textbf{(C) }\qquad\textbf{(D) }\qquad\textbf{(E) }</math> | + | <math>\textbf{(A) } 9\qquad\textbf{(B) } 12\qquad\textbf{(C) } 16\qquad\textbf{(D) } 18\qquad\textbf{(E) } 21</math> |
[[2024 AMC 10A Problems/Problem 19|Solution]] | [[2024 AMC 10A Problems/Problem 19|Solution]] | ||
Line 157: | Line 160: | ||
==Problem 20== | ==Problem 20== | ||
− | + | Let <math>S</math> be a subset of <math>\{1, 2, 3, \dots, 2024\}</math> such that the following two conditions hold: <math>\linebreak</math> | |
+ | *If <math>x</math> and <math>y</math> are distinct elements of <math>S</math>, then <math>|x-y| > 2.</math> <math>\newline</math> | ||
+ | *If <math>x</math> and <math>y</math> are distinct odd elements of <math>S</math>, then <math>|x-y| > 6.</math> <math>\newline</math> | ||
+ | What is the maximum possible number of elements in <math>S</math>? | ||
− | <math>\textbf{(A) }\qquad\textbf{(B) }\qquad\textbf{(C) }\qquad\textbf{(D) }\qquad\textbf{(E) }</math> | + | <math>\textbf{(A) }436 \qquad \textbf{(B) }506 \qquad \textbf{(C) }608 \qquad \textbf{(D) }654 \qquad \textbf{(E) }675 \qquad</math> |
[[2024 AMC 10A Problems/Problem 20|Solution]] | [[2024 AMC 10A Problems/Problem 20|Solution]] | ||
Line 165: | Line 171: | ||
==Problem 21== | ==Problem 21== | ||
− | + | The numbers, in order, of each row and the numbers, in order, of each column of a <math>5 \times 5</math> array of integers form an arithmetic progression of length <math>5</math>. The numbers in positions <math>(5, 5)</math>, <math>(2, 4)</math>, <math>(4, 3)</math> and <math>(3, 1)</math> are <math>0</math>, <math>48</math>, <math>16</math>, and <math>12</math>, respectively. What number is in position <math>(1, 2)</math>? | |
+ | <cmath> \begin{bmatrix} . & ? &.&.&. \\ .&.&.&48&.\\ 12&.&.&.&.\\ .&.&16&.&.\\ .&.&.&.&0\end{bmatrix}</cmath> | ||
+ | |||
− | <math>\textbf{(A) }\qquad\textbf{(B) }\qquad\textbf{(C) }\qquad\textbf{(D) }\qquad\textbf{(E) }</math> | + | <math>\textbf{(A)}~19\qquad\textbf{(B)}~24\qquad\textbf{(C)}~29\qquad\textbf{(D)}~34\qquad\textbf{(E)}~39</math> |
[[2024 AMC 10A Problems/Problem 21|Solution]] | [[2024 AMC 10A Problems/Problem 21|Solution]] | ||
− | == | + | ==Pathcal K<math> be the kite formed by joining two right triangland amntother hahges with legs </math>1<math> and </math>\sqrt3<math> along a common hypotenuse. Eight copies of </math>\mathcal K<math> are used to form the polygon below. What is the area of triangle </math>\Delta ABC<math>? [[File:Screenshot_2024-11-08_3.23.29_PM.png]] |
− | + | </math>\textbf{(A) }2+3\sqrt3\qquad\textbf{(B) }\dfrac92\sqrt3\qquad\textbf{(C) }\dfrac{10+8\sqrt3}{3}\qquad\textbf{(D) }8\qquad\textbf{(E) }5\sqrt3$ | |
− | |||
− | <math>\textbf{(A) }\qquad\textbf{(B) }\qquad\textbf{(C) }\qquad\textbf{(D) }\qquad\textbf{(E) } | ||
[[2024 AMC 10A Problems/Problem 22|Solution]] | [[2024 AMC 10A Problems/Problem 22|Solution]] | ||
Line 181: | Line 187: | ||
==Problem 23== | ==Problem 23== | ||
− | + | Integers <math>a</math>, <math>b</math>, and <math>c</math> satisfy <math>ab= 1782973943400</math>, <math>bc + a = 2387</math>, and 9ca + b = 60<math>. What is </math>ab + bc + ca?<math> | |
− | <math>\textbf{(A) }\qquad\textbf{(B) }\qquad\textbf{(C) }\qquad\textbf{(D) }\qquad\textbf{(E) } | + | </math> |
+ | \textbf{(A) }212 \qquad | ||
+ | \textbf{(B) }247 \qquad | ||
+ | \textbf{(C) }258 \qquad | ||
+ | \textbf{(D) }276 \qquad | ||
+ | \textbf{(E) }284 \qquad | ||
+ | $ | ||
[[2024 AMC 10A Problems/Problem 23|Solution]] | [[2024 AMC 10A Problems/Problem 23|Solution]] | ||
Line 189: | Line 201: | ||
==Problem 24== | ==Problem 24== | ||
− | A bee is moving in three-dimensional space. A fair six-sided die with faces labeled <math>A^+, A^-, | + | A bee is moving in three-dimensional space. A fair six-sided die with faces labeled <math>A^+, A^-, , B^-, C^+,</math> and <math>C^-</math> is rolled. Suppose the bee occupies the point <math>(a,d,c).</math> If the die shows <math></math>, then the bee moves to the point <math>(a+1,b,c)</math> and if the die shows <math>A^-,</math> then the bee moves to the point <math>,b,c).</math> Analogous moves are made with the other four outcomes. Suppose the bee starts at the point <math>(0,0,0)</math> and the die is rolled four t. What is the probability that the bee traverses four distinct edges of some unit c |
<math>\textbf{(A) }\frac{1}{54}\qquad\textbf{(B) }\frac{7}{54}\qquad\textbf{(C) }\frac{1}{6}\qquad\textbf{(D) }\frac{5}{18}\qquad\textbf{(E) }\frac{2}{5}</math> | <math>\textbf{(A) }\frac{1}{54}\qquad\textbf{(B) }\frac{7}{54}\qquad\textbf{(C) }\frac{1}{6}\qquad\textbf{(D) }\frac{5}{18}\qquad\textbf{(E) }\frac{2}{5}</math> | ||
Line 196: | Line 208: | ||
==Problem 25== | ==Problem 25== | ||
+ | The figure below shows a dotted grid <math>8</math> cells wide and <math>3</math> cells tall consisting of <math>1''\times1''</math> squares. Carl places <math>1</math>-inch toothpicks alodes of the squares to create a closed loop that does not intersect itself. The numbers in the cells ithat square that are to be covered by toothpicks, and any number of toothpicks are allowed if no number is written. In how many ways can Carl place the toothpicks? | ||
+ | <asy> | ||
+ | size(6cm); | ||
+ | for (ini) { | ||
+ | draw((i, ++i) { | ||
+ | f3; ++j) { | ||
− | + | }}} | |
− | + | </asy> | |
+ | $\textbf{(A) }130\qquad\textbf{(B) }144\qquad\textbf{(C) }146\qquad\textbf{(D) } | ||
[[2024 AMC 10A Problems/Problem 25|Solution]] | [[2024 AMC 10A Problems/Problem 25|Solution]] | ||
Latest revision as of 16:22, 23 November 2024
2024 AMC 10A (Answer Key) Printable versions: • AoPS Resources • PDF | ||
Instructions
| ||
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 |
Contents
- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6
- 7 Problem 8
- 8 Problem 9
- 9 Problem 10
- 10 Problem 11
- 11 Problem 12
- 12 Problem 13
- 13 Problem 14
- 14 Problem 15
- 15 Problem 16
- 16 Problem 17
- 17 Problem 18
- 18 Problem 19
- 19 Problem 20
- 20 Problem 21
- 21 Problem 23
- 22 Problem 24
- 23 Problem 25
- 24 See also
Problem 1
What is the value of
Problem 2
A model used to estimate the time it will take to hike to the top of the mountain on a trail is of the form where and are constants, is the time in minutes, is the length of the trail in miles, and is the altitude gain in feet. The model estimates that it will take minutes to hike to the top if a trail is miles long and ascends feet, as well as if a trail is miles long and ascends feet. How many minutes does the model estimates it will take to hike to the top if the trail is miles long and ascends feet?
Problem 3
What is the sum of the digits of the smallest prime that can be written as a sum of distinct primes?
Problem 4
The number is written as the sum of not necessarily distinct two-digit numbers. What is the least number of two-digit numbers needed to write this sum?
Problem 5
What is the least value of such that is a multiple of ?
Problem 6
What is the minimum number of successive swaps of adjacent letters in the string that are needed to change the string to (For example, swaps are required to change to one such sequence of swaps is )
Problem 8
Amy, Bomani, Charlie, and Daria work in a chocolate factory. On Monday Amy, Bomani, and Charlie started working at and were able to pack , , and packages, respectively, every minutes. At some later time, Daria joined the group, and Daria was able to pack packages every minutes. Together, they finished packing packages at exactly . At what time did Daria join the group?
Problem 9
In how many ways can juniors and seniors form disjoint teams of people so that each team has juniors and seniors?
Problem 10
Consider the following operation. Given a positive integer , if is a multiple of , then you replace by . If is not a multiple of , then you replace by . For example, beginning with , this procedure gives . Suppose you start with . What value results if you perform this operation exactly times?
Problem 11
How many ordered pairs of integers satisfy ?
Infinitely many
Problem 12
Zelda played the Adventures of Math game on August 1 and scored points. She continued to play daily over the next days. The bar chart below shows the daily change in her score compared to the day before. (For example, Zelda's score on August 2 was points.) What was Zelda's average score in points over the days?
Problem 13
Two transformations are said to commute if applying the first followed by the second gives the same result as applying the second followed by the first. Consider these four transformations of the coordinate plane:
- a translation units to the right,
- a -rotation counterclockwise about the origin,
- a reflection across the -axis, and
- a dilation centered at the origin with scale factor
Of the pairs of distinct transformations from this list, how many commute?
Problem 14
One side of an equilateral triangle of height lies on line . A circle of radius is tangent to line and is externally tangent to the triangle. The area of the region exterior to the triangle and the circle and bounded by the triangle, the circle, and line can be written as , where , , and are positive integers and is not divisible by the square of any prime. What is ?
Problem 15
Let be the greatest integer such that both and are perfect squares. What is the units digit of ?
Problem 16
All of the rectangles in the figure below, which is drawn to scale, are similar to the enclosing rectangle. Each number represents the area of the rectangle. What is length ?
Problem 17
Two teams are in a best-two-out-of-three playoff: the teams will play at most games, and the winner of the playoff is the first team to win games. The first game is played on Team A's home field, and the remaining games are played on Team B's home field. Team A has a chance of winning at home, and its probability of winning when playing away from home is . Outcomes of the games are independent. The probability that Team A wins the playoff is . Then can be written in the form , where and are positive integers. What is ?
Problem 18
There are exactly positive integers such that the base- integer is divisible by (where is in base ten). What is the sum of the digits of ?
Problem 19
The first three terms of a geometric sequence are the integers and , where . What is the sum of the digits of the least possible value of ?
Problem 20
Let be a subset of such that the following two conditions hold:
- If and are distinct elements of , then
- If and are distinct odd elements of , then
What is the maximum possible number of elements in ?
Problem 21
The numbers, in order, of each row and the numbers, in order, of each column of a array of integers form an arithmetic progression of length . The numbers in positions , , and are , , , and , respectively. What number is in position ?
==Pathcal K1\sqrt3\mathcal K\Delta ABC\textbf{(A) }2+3\sqrt3\qquad\textbf{(B) }\dfrac92\sqrt3\qquad\textbf{(C) }\dfrac{10+8\sqrt3}{3}\qquad\textbf{(D) }8\qquad\textbf{(E) }5\sqrt3$
Problem 23
Integers , , and satisfy , , and 9ca + b = 60ab + bc + ca?$$ (Error compiling LaTeX. Unknown error_msg) \textbf{(A) }212 \qquad \textbf{(B) }247 \qquad \textbf{(C) }258 \qquad \textbf{(D) }276 \qquad \textbf{(E) }284 \qquad $
Problem 24
A bee is moving in three-dimensional space. A fair six-sided die with faces labeled and is rolled. Suppose the bee occupies the point If the die shows $$ (Error compiling LaTeX. Unknown error_msg), then the bee moves to the point and if the die shows then the bee moves to the point Analogous moves are made with the other four outcomes. Suppose the bee starts at the point and the die is rolled four t. What is the probability that the bee traverses four distinct edges of some unit c
Problem 25
The figure below shows a dotted grid cells wide and cells tall consisting of squares. Carl places -inch toothpicks alodes of the squares to create a closed loop that does not intersect itself. The numbers in the cells ithat square that are to be covered by toothpicks, and any number of toothpicks are allowed if no number is written. In how many ways can Carl place the toothpicks?
size(6cm); for (ini) { draw((i, ++i) { f3; ++j) { }}} (Error making remote request. Unknown error_msg)
$\textbf{(A) }130\qquad\textbf{(B) }144\qquad\textbf{(C) }146\qquad\textbf{(D) } Solution
See also
2024 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by 2023 AMC 10B Problems |
Followed by 2024 AMC 10B Problems | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |