|
|
(13 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
| ==Problem 1== | | ==Problem 1== |
− | Let <math>\mathbb{N}</math> be the set of all positive integers and <math>S = {(a,b,c,d) \in \mathbb{N}^{4} : a^{2} + b^{2} + c^{2} = d^{2}}</math>. Find the largest positive integer <math>m</math> such that <math>m</math> divides <math>abcd</math> for all <math>(a,b,c,d) \in S</math>.
| |
| | | |
| ==Problem 2== | | ==Problem 2== |
Line 7: |
Line 6: |
| | | |
| ==Problem 4== | | ==Problem 4== |
− | For any natural number <math>n</math>, expressed in base <math>10</math>, let <math>s(n)</math> denote the sum of all its digits. Find all natural numbers <math>m</math> and <math>n</math> such that <math>m < n</math> and
| |
− | <cmath>(s(n))^{2} = m and (s(m))^{2} = n</cmath>.
| |
| | | |
| ==Problem 5== | | ==Problem 5== |
| | | |
| ==Problem 6== | | ==Problem 6== |
− | Consider a set of <math>16</math> points arranged in a <math>4\times4</math> square grid formation. Prove that if any <math>7</math> of these points are coloured blue, then there exists an isosceles right-angled triangle whose vertices are all blue.
| |