Difference between revisions of "Sharygin Olympiads, the best"
(→2024 tur 2 klass 10 Problem 7) |
(→The problem from MGTU) |
||
(4 intermediate revisions by the same user not shown) | |||
Line 65: | Line 65: | ||
'''vladimir.shelomovskii@gmail.com, vvsss''' | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
==2024 tur 2 klass 9 Problem 7== | ==2024 tur 2 klass 9 Problem 7== | ||
− | [[File:Incircle and secants.png| | + | [[File:Incircle and secants.png|400px|right]] |
Let triangle <math>\triangle ABC</math> and point <math>P</math> on the side <math>BC</math> be given. Let <math>P'</math> be such point on the side <math>BC</math> that <math>BP = P'C.</math> The cross points of segments <math>AP</math> and <math>AP'</math> with the incircle <math>\omega</math> of <math>\triangle ABC</math> form a convex quadrilateral <math>EFE'F'.</math> | Let triangle <math>\triangle ABC</math> and point <math>P</math> on the side <math>BC</math> be given. Let <math>P'</math> be such point on the side <math>BC</math> that <math>BP = P'C.</math> The cross points of segments <math>AP</math> and <math>AP'</math> with the incircle <math>\omega</math> of <math>\triangle ABC</math> form a convex quadrilateral <math>EFE'F'.</math> | ||
Line 71: | Line 71: | ||
<i><b>Solution</b></i> | <i><b>Solution</b></i> | ||
− | + | 1. Particular case of [[Projective geometry (simplest cases) | Fixed point]] . | |
− | Denote <math>p_a = \frac{b+c-a}{2}, p_b = \frac{a-b+c}{2}, p_c = \frac{a+b-c}{2}, m = \frac {CP}{BP}, \mu = \frac {PF'}{AF'}.</math> | + | |
+ | 2. Denote <math>p_a = \frac{b+c-a}{2}, p_b = \frac{a-b+c}{2}, p_c = \frac{a+b-c}{2}, m = \frac {CP}{BP}, \mu = \frac {PF'}{AF'}.</math> | ||
<cmath>PD = \frac {m p_b - p_c} {m+1}, AD' = p_a \implies</cmath> | <cmath>PD = \frac {m p_b - p_c} {m+1}, AD' = p_a \implies</cmath> | ||
<cmath>x(x+y) = p_a^2, z(z+y) = PD^2, x+y+z = AP, \mu = \frac {z}{x+y}.</cmath> | <cmath>x(x+y) = p_a^2, z(z+y) = PD^2, x+y+z = AP, \mu = \frac {z}{x+y}.</cmath> | ||
+ | We perform simple transformations and get: | ||
+ | <cmath>\mu^2 p_a^2 - \mu (AP^2 - p_a^2 - PD^2) + PD^2 = 0.</cmath> | ||
+ | We use Stewart's theorem and get: | ||
+ | <cmath> AP^2 = \frac {AC^2}{1+m} + \frac {m AB^2}{1+m} - \frac {m BC^2}{(1+m)^2} \implies</cmath> | ||
+ | <cmath>(\mu p_a)^2 - 2 (\mu p_a) \frac {m p_b + p_c}{m+1} + \frac {(m p_b - p_c)^2} {(m+1)^2} = 0.</cmath> | ||
+ | <cmath>\mu = \frac {(\sqrt{m p_b} \pm \sqrt{p_c})^2}{(m+1) p_a}.</cmath> | ||
+ | Similarly <cmath>\nu = \frac {\eta + \zeta}{\xi}= \frac {(\sqrt{m p_c} \pm \sqrt{p_b})^2}{(m+1) p_a}.</cmath> | ||
+ | Therefore <math>\frac {\nu + \mu}{2} = \frac {a}{2 p_a}</math> not depends from <math>m.</math> | ||
+ | |||
+ | Let <math>M</math> be the midpoint of <math>BC, AM</math> is the median of <math>\triangle ABC</math> and <math>\triangle PAP'.</math> | ||
+ | |||
+ | The line <math>FF'</math> cross the median of <math>\triangle PAP'</math> at point <math>G'</math> such that <math>\frac {MG'}{G'A} = \frac {\nu + \mu}{2} = \frac {p_b + p_c}{2 p_a} = \frac {a}{2 p_a}.</math> | ||
+ | |||
+ | So point <math>G'</math> is fixed and this point lyes on <math>EE' \implies G = G'</math>. | ||
+ | |||
+ | Therefore the locus of crosspoints of diagonals <math>EFE'F'</math> is point <math>G.</math> | ||
+ | |||
+ | <i><b>Corollary</b></i> | ||
+ | |||
+ | Let line <math>MQ||D'D'', Q \in AC</math>. Then <math>\frac {D''Q}{AD''} = \frac {a}{2 p_a} \implies 2 D''Q = BC.</math> | ||
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
==2024 tur 2 klass 9 Problem 5== | ==2024 tur 2 klass 9 Problem 5== | ||
Line 640: | Line 663: | ||
'''vladimir.shelomovskii@gmail.com, vvsss''' | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | ==The problem from MGTU== | ||
+ | [[File:2024 olimp november pr 9.png|390px|right]] | ||
+ | The lateral face of the regular triangular pyramid <math>SABC</math> is inclined to the plane of the base <math>ABC</math> at an angle of <math>\alpha = \arctan \frac{3}{4}.</math> Points <math>D, E, F</math> are the midpoints of the sides of the <math>\triangle ABC.</math> Triangle <math>\triangle DEF</math> is the lower base of a right prism. The edges of the upper base of the prism intersect the lateral edges of the pyramid <math>SABC</math> at points <math>K, L, N.</math> The area of the total surface of the polyhedron with vertices <math>D, E, F, K, L, N</math> is equal to <math>53 \sqrt{3}.</math> Find the side of <math>\triangle ABC.</math> | ||
+ | |||
+ | <i><b>Solution</b></i> | ||
+ | |||
+ | Denote <math>AB = BC = AC = a, O</math> is the center of <math>\triangle ABC, G = DF \cap AO, GK \perp ABC, K \in AS, M = SD \cap KN.</math> | ||
+ | <cmath>OD = \frac{ CD}{3} = \frac {a \sqrt {3}}{6}, SO = OD \cdot \tan \alpha = \frac {a \sqrt {3}}{8}.</cmath> | ||
+ | <cmath>AG = \frac {AE}{2}, AO = \frac{2AE}{3} \implies \frac {KG}{SO} = \frac{AG}{AO} = \frac{3}{4} \implies KG = \frac {3 a \sqrt{3}}{32} = h.</cmath> | ||
+ | <cmath>MD = \frac{KG}{\sin \alpha} = \frac{5}{3} KG = \frac{5h}{3}.</cmath> | ||
+ | The area of the total surface of the polyhedron with vertices <math>D, E, F, K, L, N</math> is | ||
+ | <cmath>Area = [DEF] + [KLN] + 3[DFK]+ 3[DKN].</cmath> | ||
+ | <cmath>[ABC] = \frac {a^2 \sqrt{3}}{4} = 4[DEF] =4 s \implies s = \frac {a^2 \sqrt{3}}{16}.</cmath> | ||
+ | <cmath>\frac{KN}{AB} = \frac {SK}{SA} = \frac{GO}{AO} = \frac {1}{4} \implies [KLN] =\frac{[ABC]}{16} = \frac {s}{4} \implies [DEF] + [KLN] = \frac {5s}{4}.</cmath> | ||
+ | <cmath>[DFK] = \frac{KG \cdot DF}{2} = \frac{ah}{4}, ah = \frac{3}{2} s.</cmath> | ||
+ | <cmath>[DKN] = \frac{MD \cdot KN}{2} = \frac{5ah}{24} \implies 3[DFK]+ 3[DKN] = \frac{11ah}{8} = \frac{33s}{16}.</cmath> | ||
+ | <cmath>Area = \frac {5s}{4} + \frac{33s}{16} = \frac{53s}{16} = 53 \sqrt{3} \implies s = 16 \sqrt {3} = \frac {a^2 \sqrt{3}}{16} \implies a = 16.</cmath> | ||
+ | ==The trapezoid problem from MGTU== | ||
+ | [[File:2024 olimp november pr 7.png|470px|right]] | ||
+ | Points <math>M</math> and <math>N</math> are the midpoints of bases <math>AD</math> and <math>BC</math> of trapezoid <math>ABCD.</math> | ||
+ | |||
+ | Denote <math>\alpha</math> the angle between lines <math>MN</math> and <math>AC, \cos \alpha = \frac{11}{16}.</math> | ||
+ | |||
+ | Find the area of trapezoid <math>ABCD</math> if <math>MN = 2, BD = 6.</math> | ||
+ | |||
+ | <i><b>Solution</b></i> | ||
+ | |||
+ | <cmath>AF||MN||CG \implies AG = CF = AM+NC \implies FB=DG \implies</cmath> | ||
+ | <cmath>[ABCD] = [AFCG] = AC \cdot CG \cdot \sin \alpha = 2 CH \cdot CG \cdot \sin \alpha.</cmath> | ||
+ | By applying the Law of Cosines on <math>\triangle CHG, HG = \frac {BD}{2} = 3,</math> we get | ||
+ | <cmath>CH^2 + CG^2- 2 CH \cdot CG \cos \alpha = GH^2 \implies CH^2 - \frac {11}{4} CH - 5 = 0 \implies CH = 4.</cmath> | ||
+ | <cmath>\sin ^2 \alpha = 1 - \cos^2 \alpha = \frac {135}{16^2} \implies [ABCD] = 2 \cdot 4 \cdot 2 \frac {\sqrt{135}}{16} = \sqrt{135}.</cmath> |
Latest revision as of 14:29, 17 November 2024
Igor Fedorovich Sharygin (13/02/1937 - 12/03/2004, Moscow) - Soviet and Russian mathematician and teacher, specialist in elementary geometry, popularizer of science. He wrote many textbooks on geometry and created a number of beautiful problems. He headed the mathematics section of the Russian Soros Olympiads. After his death, Russia annually hosts the Geometry Olympiad for high school students. It consists of two rounds – correspondence and final. The correspondence round lasts 3 months.
The best problems of these Olympiads will be published. The numbering contains the year of the Olympiad and the serial number of the problem. Solutions are often different from the original ones.
Contents
- 1 2024 tur 2 klass 10 Problem 6
- 2 2024 tur 2 klass 10 Problem 7
- 3 2024 tur 2 klass 9 Problem 7
- 4 2024 tur 2 klass 9 Problem 5
- 5 2024 tur 2 klass 9 Problem 4
- 6 2024 tur 2 klass 9 Problem 3
- 7 2024 tur 2 klass 8 Problem 4
- 8 2024 tur 2 klass 8 Problem 2
- 9 2024, Problem 23
- 10 One-to-one mapping of the circle
- 11 2024, Problem 22
- 12 2024, Problem 21
- 13 2024, Problem 20
- 14 2024, Problem 19
- 15 2024, Problem 18
- 16 2024, Problem 17
- 17 2024, Problem 16
- 18 2024, Problem 15
- 19 2024, Problem 14
- 20 2024, Problem 12
- 21 2024, Problem 9
- 22 2024, Problem 8
- 23 2024, Problem 2
- 24 The problem from MGTU
- 25 The trapezoid problem from MGTU
2024 tur 2 klass 10 Problem 6
A point lies on one of medians of triangle in such a way that Prove that there exists a point on another median such that (A.Zaslavsky)
Proof
1. Denote It is known that barycentric coordinates are
2. Denote
is tangent to
is tangent
is the radical axes of and the power of a point with respect to a circle is so the power of a point with respect to a circle is
so is tangent to
so point symmetrical to with respect to the median satisfies the conditions.
vladimir.shelomovskii@gmail.com, vvsss
2024 tur 2 klass 10 Problem 7
Let be a triangle with and be its bisectors, be the projections of to and respectively, and be the second common point of the circle with
Prove that points are collinear. (K.Belsky)
Proof
Denote the incenter of the midpoint of
It is known ( Division of bisector) that
is cyclic.
Therefore is cyclic
Let
It is known that points and are collinear,
is the diameter of is the bisector of
Bisector
Altitude
Note that the point is a Feuerbach point of since both the inscribed circle and the Euler circle pass through it.
vladimir.shelomovskii@gmail.com, vvsss
2024 tur 2 klass 9 Problem 7
Let triangle and point on the side be given. Let be such point on the side that The cross points of segments and with the incircle of form a convex quadrilateral
Find the locus of crosspoints of diagonals (D.Brodsky)
Solution 1. Particular case of Fixed point .
2. Denote We perform simple transformations and get: We use Stewart's theorem and get: Similarly Therefore not depends from
Let be the midpoint of is the median of and
The line cross the median of at point such that
So point is fixed and this point lyes on .
Therefore the locus of crosspoints of diagonals is point
Corollary
Let line . Then
vladimir.shelomovskii@gmail.com, vvsss
2024 tur 2 klass 9 Problem 5
Let be an isosceles triangle be its circumcenter, be the orthocenter, and be a point inside the triangle such that
Prove that (A.Zaslavsky)
Proof
Denote the midpoint the midpoint the foot from to tangent to
There is a spiral similarity centered at point that maps into
The coefficient of similarity rotation angle equal so is tangent to Basic information Points and are collinear, so median of
is symmedian of
is Humpty point.
vladimir.shelomovskii@gmail.com, vvsss
2024 tur 2 klass 9 Problem 4
For which it is possible to mark several different points and several different circles on the plane in such a way that:
- exactly marked circles pass through each marked point;
- exactly marked points lie on each marked circle;
- the center of each marked circle is marked? (P.Puchkov)
Solution
Case Circles centered at and with radii
Case is not paralel to
Four circles are centered at points and Each radius is equal
Case is not paralel to or
Eight circles centered at and have radii
Case
Answer For all
vladimir.shelomovskii@gmail.com, vvsss
2024 tur 2 klass 9 Problem 3
Let and be two pairs of points isogonally conjugated with respect to a triangle and be the common point of lines and Prove that the pedal circles of points and are coaxial. (L.Shatunov, V.Shelomovskii)
Solution
1. Let be the isogonal conjugate of a point with respect to a triangle Then circle centered at the midpoint is the common pedal circle of points and ( Circumcircle of pedal triangles) So center is the midpoint and center is the midpoint
2. Denote Then is the isogonal conjugate of a point with respect to So center is the midpoint ( Two pares of isogonally conjugate points)
3. The Gauss line (or Gauss–Newton line) is the line joining the midpoints of the three diagonals of a complete quadrilateral (Gauss line).So points and are collinear as was to be proven.
vladimir.shelomovskii@gmail.com, vvsss
2024 tur 2 klass 8 Problem 4
A square with sidelength is cut from the paper. Construct a segment with length using at most folds. No instruments are available, it is allowed only to fold the paper and to mark the common points of folding lines. (M.Evdokimov)
Solution
Main idea: Let We perform horizontal fold of the sheet. We get line We perform
vertical folds of the sheet. We get vertical lines at a distance of from each other.
Point is the lower left corner of the sheet, point is the lower point of the second vertical line, point is the lower point of the line, point is the point at the intersection of the horizontal line and the vertical line.
Points and are at the intersection of the lines and and the vertical line.
vladimir.shelomovskii@gmail.com, vvsss
2024 tur 2 klass 8 Problem 2
Let be the midpoint of side of an acute-angled triangle and be the projection of the orthocenter to the bisector of angle Prove that bisects the segment (L.Emelyanov)
Solution
Denote - the midpoint of and the foots of the heights, be the Euler circle
is the circle with the diameter points and are collinear.
vladimir.shelomovskii@gmail.com, vvsss
2024, Problem 23
A point moves along a circle Let and be fixed points of and be an arbitrary point inside
The common external tangents to the circumcircles of triangles and meet at point
Prove that all points lie on two fixed lines.
Solution
Denote
is the circumcenter of is the circumcenter of
Let and be the midpoints of the arcs of
Let and be the midpoints of the arcs of
These points not depends from position of point
Suppose, see diagram). Let
Similarly,
Let
Therefore Similarly, if then
Claim
Points and are collinear.
Proof
is the midpoint of arc Denote Therefore points and are collinear.
vladimir.shelomovskii@gmail.com, vvsss
One-to-one mapping of the circle
Let a circle two fixed points and on it and a point inside it be given. Then there is a one-to-one mapping of the circle onto itself, based on the following two theorems.
1. Let a circle two fixed points and on and a point inside be given.
Let an arbitrary point be given.
Let is the midpoint of the arc
Denote Prove that
2. Let a circle two fixed points and on and a point inside be given.
Let an arbitrary point be given.
Let is the midpoint of the arc
Denote
Denote Prove that
Proof
Points are collinear.
2. Points and are collinear (see Claim in 2024, Problem 23).
We use Pascal's theorem for points and crosspoints and get
vladimir.shelomovskii@gmail.com, vvsss
2024, Problem 22
A segment is given. Let be an arbitrary point of the perpendicular bisector to be the point on the circumcircle of opposite to and an ellipse centered at touche
Find the locus of touching points of the ellipse with the line
Solution
Denote the midpoint the point on the line
In order to find the ordinate of point we perform an affine transformation (compression along axis which will transform the ellipse into a circle with diameter The tangent of the maps into the tangent of the Denote
So point is the fixed point ( not depends from angle
Therefore point lies on the circle with diameter (except points and
vladimir.shelomovskii@gmail.com, vvsss
2024, Problem 21
A chord of the circumcircle of a triangle meets the sides at points respectively. The tangents to the circumcircle at and meet at point and the tangents at points and meets at point The line meets at point
Prove that the lines and concur.
Proof
WLOG, Denote
Point is inside
We use Pascal’s theorem for quadrilateral and get
We use projective transformation which maps to a circle and that maps the point to its center.
From this point we use the same letters for the results of mapping. Therefore the segments and are the diameters of is the midpoint
preimage lies on preimage
vladimir.shelomovskii@gmail.com, vvsss
2024, Problem 20
Let a triangle points and be given, Points and are the isogonal conjugate of the points and respectively, with respect to
Denote and the circumradii of triangles and respectively.
Prove that where is the area of
Proof
Denote It is easy to prove that is equivalent to By applying the law of sines, we get
We need to prove that We make the transformations:
The last statement is obvious.
vladimir.shelomovskii@gmail.com, vvsss
2024, Problem 19
A triangle its circumcircle , and its incenter are drawn on the plane.
Construct the circumcenter of using only a ruler.
Solution
We successively construct:
- the midpoint of the arc
- the midpoint of the arc
- the polar of point
- the polar of point
- the polar of the line
- the tangent to
- the tangent to
- the trapezium
- the point
- the point
- the midpoint of the segment
- the midpoint of the segment
- the diameter of
- the diameter of
- the circumcenter
vladimir.shelomovskii@gmail.com, vvsss
2024, Problem 18
Let be the altitudes of an acute-angled triangle be its excenter corresponding to be the reflection of about the line Points are defined similarly. Prove that the lines concur.
Proof
Denote the incenter of Points are collinear. We will prove that Denote - semiperimeter. The area Points are collinear, so the lines concur at the point
vladimir.shelomovskii@gmail.com, vvsss
2024, Problem 17
Let be not isosceles triangle, be its incircle.
Let and be the points at which the incircle of touches the sides and respectively.
Let be the point on ray such that
Let be the point on ray such that
The circumcircles of and intersect again at and respectively.
Prove that and are concurrent.
Proof
so points and are collinear (see Symmetry and incircle for details).
Therefore lines and are concurrent (see Symmetry and incircle A for details.)
vladimir.shelomovskii@gmail.com, vvsss
2024, Problem 16
Let and be the bisectors of a triangle
The segments and meet at point Let be the projection of to
Points and on the sides and respectively, are such that
Prove that
Proof
is the common side)
is the midpoint
is the midpoint of (see Division of bisector for details.)
So Denote
Another solution see 2024_Sharygin_olimpiad_Problem_16
vladimir.shelomovskii@gmail.com, vvsss
2024, Problem 15
The difference of two angles of a triangle is greater than Prove that the ratio of its circumradius and inradius is greater than
Proof
Suppose,
Let be the point on opposite be the midpoint of arc Then Incenter triangle lies on therefore
We use the Euler law
If then
If increases so decreases.
vladimir.shelomovskii@gmail.com, vvsss
2024, Problem 14
The incircle of a right-angled triangle touches the circumcircle of its medial triangle at point Let be the tangent to from the midpoint of the hypothenuse distinct from Prove that
Proof
Let and be the circumcircle and the incenter of
Let be nine-point center of be the point at such that
Denote
is the right-angled triangle, so is the midpoint
Let be the result of the homothety of the point centered in with the coefficient Then WLOG,
Let be the foot from to . Therefore points and are collinear. vladimir.shelomovskii@gmail.com, vvsss
2024, Problem 12
The bisectors of a with meet at point
The circumcircles of triangles meet at point
Prove that the line bisects the side
Proof
Denote the midpoint In triangles and , by applying the law of sines, we get
We use the formulas for circle and get
In triangles and , by applying the law of sines, we get
Therefore The function increases monotonically on the interval
This means and points and are collinear.
vladimir.shelomovskii@gmail.com, vvsss
2024, Problem 9
Let be a trapezoid circumscribed around a circle centered at which touches the sides and at points respectively.
The line passing trough and parallel to the bases of trapezoid meets at point
Prove that and concur.
Solution
Solution 1.
is the center of similarity of triangles and
Solution 2.
Denote
vladimir.shelomovskii@gmail.com, vvsss
2024, Problem 8
Let be a quadrilateral with and
The incircle of touches the sides and at points and respectively.
The midpoints of segments and are points
Prove that points are concyclic.
Solution
is the rotation of around a point through an angle
is the rotation of around a point through an angle
So is the rotation of around a point through an angle
vladimir.shelomovskii@gmail.com, vvsss
2024, Problem 2
Three distinct collinear points are given. Construct the isosceles triangles such that these points are their circumcenter, incenter and excenter (in some order).
Solution
Let be the midpoint of the segment connecting the incenter and excenter. It is known that point belong the circumcircle. Construction is possible if a circle with diameter IE (incenter – excenter) intersects a circle with radius OM (circumcenter – M). Situation when between and is impossible.
Denote points such that and
Suppose point is circumcenter, so is incenter. is midpoint BC. The vertices of the desired triangle are located at the intersection of a circle with center and radius with and a line
Suppose point is circumcenter, so is incenter. is midpoint The vertices of the desired triangle are located at the intersection of a circle with center and radius with and a line
Suppose point is circumcenter, so is incenter. is midpoint Suppose The vertices of the desired triangle are located at the intersection of a circle with center and radius with and a line
If there is not desired triangle.
vladimir.shelomovskii@gmail.com, vvsss
The problem from MGTU
The lateral face of the regular triangular pyramid is inclined to the plane of the base at an angle of Points are the midpoints of the sides of the Triangle is the lower base of a right prism. The edges of the upper base of the prism intersect the lateral edges of the pyramid at points The area of the total surface of the polyhedron with vertices is equal to Find the side of
Solution
Denote is the center of The area of the total surface of the polyhedron with vertices is
The trapezoid problem from MGTU
Points and are the midpoints of bases and of trapezoid
Denote the angle between lines and
Find the area of trapezoid if
Solution
By applying the Law of Cosines on we get