Difference between revisions of "2024 AMC 10B Problems/Problem 8"
m (Protected "2024 AMC 10B Problems/Problem 8" ([Edit=Allow only administrators] (expires 04:59, 14 November 2024 (UTC)) [Move=Allow only administrators] (expires 04:59, 14 November 2024 (UTC)))) |
(→🎥✨ Video Solution by Scholars Foundation ➡️ (Easy-to-Understand 💡✔️)) |
||
(9 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
+ | Let <math>N</math> be the product of all the positive integer divisors of <math>42</math>. What is the units digit | ||
+ | of <math>N</math>? | ||
+ | <math>\textbf{(A) } 0\qquad\textbf{(B) } 2\qquad\textbf{(C) } 4\qquad\textbf{(D) } 6\qquad\textbf{(E) } 8</math> | ||
+ | |||
+ | ==Solution 1== | ||
+ | The factors of <math>42</math> are: <math>1, 2, 3, 6, 7, 14, 21, 42</math>. Multiply unit digits to get <math>\boxed{\textbf{(D) } 6}</math> | ||
+ | |||
+ | ==Solution 2== | ||
+ | The product of the factors of a number <math>n</math> is <math>n^\frac{\tau(n)}{2}</math>, where <math>\tau(n)</math> is the number of positive divisors of <math>n</math>. We see that <math>42 = 2^1 \cdot 3^1 \cdot 7^1</math> which has <math>(1+1)(1+1)(1+1) = 8</math> factors, so the product of the divisors of <math>42</math> is | ||
+ | |||
+ | <cmath>42^\frac{8}{2} = 42^4.</cmath> | ||
+ | |||
+ | But we only need the last digit of this, which is the same as the last digit of <math>2^4</math>. The answer is <math>\boxed{\textbf{(D) } 6}</math>. | ||
+ | |||
+ | ==🎥✨ Video Solution by Scholars Foundation ➡️ (Easy-to-Understand 💡✔️)== | ||
+ | |||
+ | https://youtu.be/T_QESWAKUUk?si=E8c2gKO-ZVPZ2tek&t=201 | ||
+ | |||
+ | ==Video Solution 1 by Pi Academy (Fast and Easy ⚡🚀)== | ||
+ | |||
+ | https://youtu.be/QLziG_2e7CY?feature=shared | ||
+ | |||
+ | ~ Pi Academy | ||
+ | |||
+ | ==Video Solution 2 by SpreadTheMathLove== | ||
+ | https://www.youtube.com/watch?v=24EZaeAThuE | ||
+ | |||
+ | ==See also== | ||
+ | {{AMC10 box|year=2024|ab=B|num-b=7|num-a=9}} | ||
+ | {{MAA Notice}} |
Latest revision as of 06:33, 19 November 2024
Contents
Problem
Let be the product of all the positive integer divisors of . What is the units digit of ?
Solution 1
The factors of are: . Multiply unit digits to get
Solution 2
The product of the factors of a number is , where is the number of positive divisors of . We see that which has factors, so the product of the divisors of is
But we only need the last digit of this, which is the same as the last digit of . The answer is .
🎥✨ Video Solution by Scholars Foundation ➡️ (Easy-to-Understand 💡✔️)
https://youtu.be/T_QESWAKUUk?si=E8c2gKO-ZVPZ2tek&t=201
Video Solution 1 by Pi Academy (Fast and Easy ⚡🚀)
https://youtu.be/QLziG_2e7CY?feature=shared
~ Pi Academy
Video Solution 2 by SpreadTheMathLove
https://www.youtube.com/watch?v=24EZaeAThuE
See also
2024 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.