Difference between revisions of "2024 AMC 10A Problems"

m
(Problem 19)
 
(111 intermediate revisions by 33 users not shown)
Line 1: Line 1:
 
{{AMC10 Problems|year=2024|ab=A}}
 
{{AMC10 Problems|year=2024|ab=A}}
  
Is this a leak, or is this a mock test?
+
==Problem 1==
  
==Problem 1==
+
What is the value of <math>9901\cdot101-99\cdot10101?</math>
  
A bug has created a mock test for the AMC 10 A along a number line, starting at <math>-2</math>. It crawls to <math>-6</math>, then turns around and crawls to <math>5</math>. How many units does the bug crawl altogether?
+
<math>\textbf{(A)}~2\qquad\textbf{(B)}~20\qquad\textbf{(C)}~200\qquad\textbf{(D)}~202\qquad\textbf{(E)}~2020</math>
  
<math> \textbf{(A)}\ 9\qquad\textbf{(B)}\ 11\qquad\textbf{(C)}\ 13\qquad\textbf{(D)}\ 14\qquad\textbf{(E)}\ 15 </math>
+
[[2024 AMC 10A Problems/Problem 1|Solution]]
  
 
==Problem 2==
 
==Problem 2==
  
What is the value of <math>\dfrac{11!-10!}{9!}</math>?
+
A model used to estimate the time it will take to hike to the top of the mountain on a trail is of the form <math>T=aL+bG,</math> where <math>a</math> and <math>b</math> are constants, <math>T</math> is the time in minutes, <math>L</math> is the length of the trail in miles, and <math>G</math> is the altitude gain in feet. The model estimates that it will take <math>69</math> minutes to hike to the top if a trail is <math>1.5</math> miles long and ascends <math>800</math> feet, as well as if a trail is <math>1.2</math> miles long and ascends <math>1100</math> feet. How many minutes does the model estimates it will take to hike to the top if the trail is <math>4.2</math> miles long and ascends <math>4000</math> feet?
 +
 
 +
<math>\textbf{(A) }240\qquad\textbf{(B) }246\qquad\textbf{(C) }252\qquad\textbf{(D) }258\qquad\textbf{(E) }264</math>
  
<math>\textbf{(A)}\ 99\qquad\textbf{(B)}\ 100\qquad\textbf{(C)}\ 110\qquad\textbf{(D)}\ 121\qquad\textbf{(E)}\ 132</math>
+
[[2024 AMC 10A Problems/Problem 2|Solution]]
  
 
==Problem 3==
 
==Problem 3==
When counting from <math>3</math> to <math>201</math>, <math>53</math> is the <math>51^{st}</math> number counted. When counting backwards from <math>201</math> to <math>3</math>, <math>53</math> is the <math>n^{th}</math> number counted. What is <math>n</math>?
 
  
<math>\textbf{(A)}\ 146 \qquad \textbf{(B)}\ 147 \qquad \textbf{(C)}\ 148 \qquad \textbf{(D)}\ 149 \qquad \textbf{(E)}\ 150</math>
+
What is the sum of the digits of the smallest prime that can be written as a sum of <math>5</math> distinct primes?
 +
 
 +
<math>\textbf{(A) }5\qquad\textbf{(B) }7\qquad\textbf{(C) }8\qquad\textbf{(D) }10\qquad\textbf{(E) }13</math>
 +
 
 +
[[2024 AMC 10A Problems/Problem 3|Solution]]
  
 
==Problem 4==
 
==Problem 4==
What is <math>\frac{2+4+6}{1+3+5} - \frac{1+3+5}{2+4+6}?</math>
+
 
+
The number <math>2024</math> is written as the sum of not necessarily distinct two-digit numbers. What is the least number of two-digit numbers needed to write this sum?
<math>\textbf{(A)}\ -1 \qquad
+
 
\textbf{(B)}\ \frac{5}{36} \qquad
+
<math>\textbf{(A) }20\qquad\textbf{(B) }21\qquad\textbf{(C) }22\qquad\textbf{(D) }23\qquad\textbf{(E) }24</math>
\textbf{(C)}\ \frac{7}{12} \qquad
+
 
\textbf{(D)}\ \frac{147}{60} \qquad
+
[[2024 AMC 10A Problems/Problem 4|Solution]]
\textbf{(E)}\ \frac{43}{3} </math>
 
  
 
==Problem 5==
 
==Problem 5==
At the theater children get in for half price.  The price for <math>5</math> adult tickets and <math>4</math> child tickets is <math>\$24.50</math>.  How much would <math>8</math> adult tickets and <math>6</math> child tickets cost?
 
  
<math>\textbf{(A) }\$35\qquad
+
What is the least value of <math>n</math> such that <math>n!</math> is a multiple of <math>2024</math>?
\textbf{(B) }\$38.50\qquad
+
 
\textbf{(C) }\$40\qquad
+
<math>\textbf{(A) } 11\qquad\textbf{(B) } 21\qquad\textbf{(C) } 22\qquad\textbf{(D) } 23\qquad\textbf{(E) } 253</math>
\textbf{(D) }\$42\qquad
+
 
\textbf{(E) }\$42.50</math>
+
[[2024 AMC 10A Problems/Problem 5|Solution]]
  
 
==Problem 6==
 
==Problem 6==
  
The area of a pizza with radius <math>4</math> is <math>N</math> percent larger than the area of a pizza with radius <math>3</math> inches. What is the integer closest to <math>N</math>?
+
What is the minimum number of successive swaps of adjacent letters in the string <math>ABCDEF</math> that are needed to change the string to <math>FEDCBA?</math> (For example, <math>3</math> swaps are required to change <math>ABC</math> to <math>CBA;</math> one such sequence of swaps is
 +
<math>ABC\to BAC\to BCA\to CBA.</math>)
  
<math>\textbf{(A) } 25 \qquad\textbf{(B) } 33 \qquad\textbf{(C) } 44\qquad\textbf{(D) } 66 \qquad\textbf{(E) } 78</math>
+
<math>\textbf{(A)}~6\qquad\textbf{(B)}~10\qquad\textbf{(C)}~12\qquad\textbf{(D)}~15\qquad\textbf{(E)}~24</math>
 +
 
 +
[[2024 AMC 10A Problems/Problem 6|Solution]]
  
 
==Problem 7==
 
==Problem 7==
  
A circle has a chord of length <math>10</math>, and the distance from the center of the circle to the chord is <math>5</math>. What is the area of the circle?
+
The product of three integers is <math>60</math>. What is the least possible positive sum of the  
 +
three integers?  
  
<math>
+
<math>\textbf{(A) }2\qquad\textbf{(B) }3\qquad\textbf{(C) }5\qquad\textbf{(D) }6\qquad\textbf{(E) }13</math>
\textbf{(A) }25\pi \qquad
+
 
\textbf{(B) }50\pi \qquad
+
[[2024 AMC 10A Problems/Problem 7|Solution]]
\textbf{(C) }75\pi \qquad
 
\textbf{(D) }100\pi \qquad
 
\textbf{(E) }125\pi \qquad
 
</math>
 
  
 
==Problem 8==
 
==Problem 8==
  
On an algebra quiz, <math>10\%</math> of the students scored <math>70</math> points, <math>35\%</math> scored <math>80</math> points, <math>30\%</math> scored <math>90</math> points, and the rest scored <math>100</math> points. What is the difference between the mean and median score of the students' scores on this quiz?
+
Amy, Bomani, Charlie, and Daria work in a chocolate factory. On Monday Amy, Bomani, and Charlie started working at <math>1:00 PM</math> and were able to pack <math>4</math>, <math>3</math>, and <math>3</math> packages, respectively, every <math>3</math> minutes. At some later time, Daria joined the group, and Daria was able to pack <math>5</math> packages every <math>4</math> minutes. Together, they finished packing <math>450</math> packages at exactly <math>2:45 PM</math>. At what time did Daria join the group?
 +
 
 +
<math>\textbf{(A) }1:25\text{ PM}\qquad\textbf{(B) }1:35\text{ PM}\qquad\textbf{(C) }1:45\text{ PM}\qquad\textbf{(D) }1:55\text{ PM}\qquad\textbf{(E) }2:05\text{ PM}</math>
  
<math> \textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5</math>
+
[[2024 AMC 10A Problems/Problem 8|Solution]]
  
 
==Problem 9==
 
==Problem 9==
  
In the plane figure shown below, <math>3</math> of the unit squares have been shaded. What is the least number of additional unit squares that must be shaded so that the resulting figure has two lines of symmetry?
+
In how many ways can <math>6</math> juniors and <math>6</math> seniors form <math>3</math> disjoint teams of <math>4</math> people so  
 +
that each team has <math>2</math> juniors and <math>2</math> seniors?  
  
<asy>
+
<math>\textbf{(A) }720\qquad\textbf{(B) }1350\qquad\textbf{(C) }2700\qquad\textbf{(D) }3280\qquad\textbf{(E) }8100</math>
import olympiad;
 
unitsize(25);
 
filldraw((1,3)--(1,4)--(2,4)--(2,3)--cycle, gray(0.7));
 
filldraw((2,1)--(2,2)--(3,2)--(3,1)--cycle, gray(0.7));
 
filldraw((4,0)--(5,0)--(5,1)--(4,1)--cycle, gray(0.7));
 
for (int i = 0; i < 5; ++i) {
 
for (int j = 0; j < 6; ++j) {
 
pair A = (j,i);
 
}
 
}
 
for (int i = 0; i < 5; ++i) {
 
for (int j = 0; j < 6; ++j) {
 
if (j != 5) {
 
draw((j,i)--(j+1,i));
 
}
 
if (i != 4) {
 
draw((j,i)--(j,i+1));
 
}
 
}
 
}
 
</asy>
 
  
<math>\textbf{(A) } 4 \qquad \textbf{(B) } 5 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 7 \qquad \textbf{(E) } 8</math>
+
[[2024 AMC 10A Problems/Problem 9|Solution]]
  
 
==Problem 10==
 
==Problem 10==
The functions <math>\sin(x)</math> and <math>\cos(x)</math> are periodic with least period <math>2\pi</math>. What is the least period of the function <math>\cos(\sin(x))</math>?
 
  
<math>\textbf{(A)}\ \frac{\pi}{2}\qquad\textbf{(B)}\ \pi\qquad\textbf{(C)}\ 2\pi \qquad\textbf{(D)}\ 4\pi \qquad\textbf{(E)} </math> The function is not periodic.
+
Consider the following operation. Given a positive integer <math>n</math>, if <math>n</math> is a multiple of <math>3</math>, then you replace <math>n</math> by <math>\frac{n}{3}</math>. If <math>n</math> is not a multiple of <math>3</math>, then you replace <math>n</math> by <math>n+10</math>. For example, beginning with <math>n=4</math>, this procedure gives <math>4\to14\to24\to8\to18\to6\to2\to12\to\cdots</math>. Suppose you start with <math>n=100</math>. What value results if you perform this operation exactly <math>100</math> times?
 +
 +
<math>\textbf{(A) }10\qquad\textbf{(B) }20\qquad\textbf{(C) }30\qquad\textbf{(D) }40\qquad\textbf{(E) }50</math>
 +
 
 +
[[2024 AMC 10A Problems/Problem 10|Solution]]
  
 
==Problem 11==
 
==Problem 11==
Let <math>x</math> and <math>y</math> be two-digit positive integers with mean <math>60</math>. What is the maximum value of the ratio <math>\frac{x}{y}</math>?
 
  
<math>\textbf{(A)}\ 3 \qquad \textbf{(B)}\ \frac{33}{7} \qquad \textbf{(C)}\ \frac{39}{7} \qquad \textbf{(D)}\ 9 \qquad \textbf{(E)}\ \frac{99}{10}</math>
+
How many ordered pairs of integers <math>(m, n)</math> satisfy <math>\sqrt{n^2 - 49} = m</math>?
 +
 
 +
<math>\textbf{(A)}~1\qquad\textbf{(B)}~2\qquad\textbf{(C)}~3\qquad\textbf{(D)}~4\qquad\textbf{(E)}</math> Infinitely many
 +
 
 +
[[2024 AMC 10A Problems/Problem 11|Solution]]
  
 
==Problem 12==
 
==Problem 12==
  
A frog sitting at the point <math>(1, 2)</math> begins a sequence of jumps, where each jump is parallel to one of the coordinate axes and has length <math>1</math>, and the direction of each jump (up, down, right, or left) is chosen independently at random. The sequence ends when the frog reaches a side of the square with vertices <math>(0,0), (0,4), (4,4),</math> and <math>(4,0)</math>. What is the probability that the sequence of jumps ends on a vertical side of the square?
+
Zelda played the ''Adventures of Math'' game on August 1 and scored <math>1,700</math> points. She continued to play daily over the next <math>5</math> days. The bar chart below shows the daily change in her score compared to the day before. (For example, Zelda's score on August 2 was <math>1,700 + 80 = 1,780</math> points.) What was Zelda's average score in points over the <math>6</math> days?[[File:Screenshot_2024-11-08_1.51.51_PM.png]]
 +
 
 +
<math>\textbf{(A)}~1700\qquad\textbf{(B)}~1702\qquad\textbf{(C)}~1703\qquad\textbf{(D)}~1713\qquad\textbf{(E)}~1715</math>
  
<math>\textbf{(A)}\ \frac12\qquad\textbf{(B)}\ \frac 58\qquad\textbf{(C)}\ \frac 23\qquad\textbf{(D)}\ \frac34\qquad\textbf{(E)}\ \frac 78</math>
+
[[2024 AMC 10A Problems/Problem 12|Solution]]
  
 
==Problem 13==
 
==Problem 13==
 +
Two transformations are said to commute if applying the first followed by the second
 +
gives the same result as applying the second followed by the first. Consider these
 +
four transformations of the coordinate plane:
 +
 +
* a translation <math>2</math> units to the right,
 +
 +
* a <math>90^{\circ}</math>-rotation counterclockwise about the origin,
  
What is the minimum number of digits to the right of the decimal point needed to express the fraction <math>\frac{123456789}{2^{26}\cdot 5^4}</math> as a decimal?
+
* a reflection across the <math>x</math>-axis, and
  
<math> \textbf{(A)}\ 4\qquad\textbf{(B)}\ 22\qquad\textbf{(C)}\ 26\qquad\textbf{(D)}\ 30\qquad\textbf{(E)}\ 104</math>
+
* a dilation centered at the origin with scale factor <math>2.</math>
 +
 
 +
Of the <math>6</math> pairs of distinct transformations from this list, how many commute?
 +
 
 +
<math>\textbf{(A)}~1\qquad\textbf{(B)}~2\qquad\textbf{(C)}~3\qquad\textbf{(D)}~4\qquad\textbf{(E)}~5</math>
 +
 
 +
[[2024 AMC 10A Problems/Problem 13|Solution]]
  
 
==Problem 14==
 
==Problem 14==
  
The sequence
+
One side of an equilateral triangle of height <math>24</math> lies on line <math>\ell</math>. A circle of radius <math>12</math> is tangent to line <math>\ell</math> and is externally tangent to the triangle. The area of the region exterior to the triangle and the circle and bounded by the triangle, the circle, and line <math>\ell</math> can be written as <math>a \sqrt{b} - c \pi</math>, where <math>a</math>, <math>b</math>, and <math>c</math> are positive integers and <math>b</math> is not divisible by the square of any prime. What is <math>a + b + c</math>? 
 +
 
 +
<math>\textbf{(A)}~72\qquad\textbf{(B)}~73\qquad\textbf{(C)}~74\qquad\textbf{(D)}~75\qquad\textbf{(E)}~76</math>
 +
 
 +
[[2024 AMC 10A Problems/Problem 14|Solution]]
  
<math>\log_{12}{162}</math>, <math>\log_{12}{x}</math>, <math>\log_{12}{y}</math>, <math>\log_{12}{z}</math>, <math>\log_{12}{1250}</math>
+
==Problem 15==
  
is an arithmetic progression. What is <math>x</math>?
+
Let <math>M</math> be the greatest integer such that both <math>M+1213</math> and <math>M+3773</math> are perfect squares. What is the units digit of <math>M</math>?
  
<math> \textbf{(A)} \ 125\sqrt{3} \qquad \textbf{(B)} \ 270 \qquad \textbf{(C)} \ 162\sqrt{5} \qquad \textbf{(D)} \ 434 \qquad \textbf{(E)} \ 225\sqrt{6}</math>
+
<math>\textbf{(A) }1\qquad\textbf{(B) }2\qquad\textbf{(C) }3\qquad\textbf{(D) }6\qquad\textbf{(E) }8</math>
  
==wheres q15 💀==
+
[[2024 AMC 10A Problems/Problem 15|Solution]]
  
 
==Problem 16==
 
==Problem 16==
  
All the numbers <math>2, 3, 4, 5, 6, 7</math> are assigned to the six faces of a cube, one number to each face. For each of the eight vertices of the cube, a product of three numbers is computed, where the three numbers are the numbers assigned to the three faces that include that vertex. What is the greatest possible value of the sum of these eight products?
+
All of the rectangles in the figure below, which is drawn to scale, are similar to the enclosing rectangle. Each number represents the area of the rectangle. What is length <math>AB</math>? <math>\newline</math>
 +
[[File:Screenshot 2024-11-08 2.08.49 PM.png]]
 +
<math>\textbf{(A) }4+4\sqrt5\qquad\textbf{(B) }10\sqrt2\qquad\textbf{(C) }5+5\sqrt5\qquad\textbf{(D) }10\sqrt[4]{8}\qquad\textbf{(E) }20</math>
  
<math>\textbf{(A)}\ 312 \qquad
+
[[2024 AMC 10A Problems/Problem 16|Solution]]
\textbf{(B)}\ 343 \qquad
 
\textbf{(C)}\ 625 \qquad
 
\textbf{(D)}\ 729 \qquad
 
\textbf{(E)}\ 1680</math>
 
  
 
==Problem 17==
 
==Problem 17==
Jesse cuts a circular disk of radius 12, along 2 radii to form 2 sectors, one with a central angle of 120. He makes two circular cones using each sector to form the lateral surface of each cone. What is the ratio of the volume of the smaller cone to the larger cone?
 
  
<math>\textbf{(A)}\ \frac{1}{8}\qquad\textbf{(B)}\ \frac{1}{4}\qquad\textbf{(C)}\ \frac{\sqrt{10}}{10}\qquad\textbf{(D)}\ \frac{\sqrt{5}}{6}\qquad\textbf{(E)}\ \frac{\sqrt{5}}{5}</math>
+
Two teams are in a best-two-out-of-three playoff: the teams will play at most <math>3</math> games, and the winner of the playoff is the first team to win <math>2</math> games. The first game is played on Team A's home field, and the remaining games are played on Team B's home field. Team A has a <math>\frac{2}{3}</math> chance of winning at home, and its probability of winning when playing away from home is <math>p</math>. Outcomes of the games are independent. The probability that Team A wins the playoff is <math>\frac{1}{2}</math>. Then <math>p</math> can be written in the form <math>\frac{1}{2}(m - \sqrt{n})</math>, where <math>m</math> and <math>n</math> are positive integers. What is <math>m+n</math>?
 +
 
 +
<math>\textbf{(A)}~10\qquad\textbf{(B)}~11\qquad\textbf{(C)}~12\qquad\textbf{(D)}~13\qquad\textbf{(E)}~14</math>
 +
 
 +
[[2024 AMC 10A Problems/Problem 17|Solution]]
  
 
==Problem 18==
 
==Problem 18==
  
Rhombus <math>ABCD</math> has side length <math>2</math> and <math>\angle B = 120</math>°. Region <math>R</math> consists of all points inside the rhombus that are closer to vertex <math>B</math> than any of the other three vertices. What is the area of <math>R</math>?
+
There are exactly <math>K</math> positive integers <math>5 \leq b \leq 2024</math> such that the base-<math>b</math> integer <math>2024_{b}</math> is divisible by <math>16</math>(where <math>16</math> is in base ten). What is the sum of the digits of <math>K</math>?
  
<math> \textbf{(A)}\ \frac{\sqrt{3}}{3} \qquad\textbf{(B)}\ \frac{\sqrt{3}}{2} \qquad\textbf{(C)}\ \frac{2\sqrt{3}}{3} \qquad\textbf{(D)}\ 1 + \frac{\sqrt{3}}{3} \qquad\textbf{(E)}\ 2</math>
+
<math>\textbf{(A)}~16\qquad\textbf{(B)}~17\qquad\textbf{(C)}~18\qquad\textbf{(D)}~20\qquad\textbf{(E)}~21</math>
[[Category: Introductory Geometry Problems]]
+
 
 +
[[2024 AMC 10A Problems/Problem 18|Solution]]
  
 
==Problem 19==
 
==Problem 19==
  
Let <math>p</math> and <math>q</math> be positive integers such that <cmath>\frac{5}{9} < \frac{p}{q} < \frac{4}{7}</cmath>and <math>q</math> is as small as possible. What is <math>q-p</math>?
+
The first three terms of a geometric sequence are the integers <math>a, 720</math> and <math>b</math>, where <math>a < 720 < b</math>. What is the sum of the digits of the least possible value of <math>b</math>?
  
<math>\textbf{(A) } 7 \qquad \textbf{(B) } 11 \qquad \textbf{(C) } 13 \qquad \textbf{(D) } 17 \qquad \textbf{(E) } 19 </math>
+
<math>\textbf{(A) } 9\qquad\textbf{(B) } 12\qquad\textbf{(C) } 16\qquad\textbf{(D) } 18\qquad\textbf{(E) } 21</math>
 +
 
 +
[[2024 AMC 10A Problems/Problem 19|Solution]]
  
 
==Problem 20==
 
==Problem 20==
There exists a unique strictly increasing sequence of nonnegative integers <math>a_1 < a_2 < … < a_k</math> such that<cmath>\frac{2^{289}+1}{2^{17}+1} = 2^{a_1} + 2^{a_2} + … + 2^{a_k}.</cmath>What is <math>k?</math>
 
  
<math>\textbf{(A) } 117 \qquad \textbf{(B) } 136 \qquad \textbf{(C) } 137 \qquad \textbf{(D) } 273 \qquad \textbf{(E) } 306</math>
+
Let <math>S</math> be a subset of <math>\{1, 2, 3, \dots, 2024\}</math> such that the following two conditions hold: <math>\linebreak</math>
 +
*If <math>x</math> and <math>y</math> are distinct elements of <math>S</math>, then <math>|x-y| > 2.</math>  <math>\newline</math>
 +
*If <math>x</math> and <math>y</math> are distinct odd elements of <math>S</math>, then <math>|x-y| > 6.</math> <math>\newline</math>
 +
What is the maximum possible number of elements in <math>S</math>?
 +
 
 +
<math>\textbf{(A) }436 \qquad \textbf{(B) }506 \qquad \textbf{(C) }608 \qquad \textbf{(D) }654 \qquad \textbf{(E) }675 \qquad</math>
 +
 
 +
[[2024 AMC 10A Problems/Problem 20|Solution]]
  
 
==Problem 21==
 
==Problem 21==
  
In <math>\triangle{ABC}</math> with side lengths <math>AB = 13</math>, <math>AC = 12</math>, and <math>BC = 5</math>, let <math>O</math> and <math>I</math> denote the circumcenter and incenter, respectively. A circle with center <math>M</math> is tangent to the legs <math>AC</math> and <math>BC</math> and to the circumcircle of <math>\triangle{ABC}</math>. What is the area of <math>\triangle{MOI}</math>?
+
The numbers, in order, of each row and the numbers, in order, of each column of a <math>5 \times 5</math> array of integers form an arithmetic progression of length <math>5</math>. The numbers in positions <math>(5, 5)</math>, <math>(2, 4)</math>, <math>(4, 3)</math> and <math>(3, 1)</math> are <math>0</math>, <math>48</math>, <math>16</math>, and <math>12</math>, respectively. What number is in position <math>(1, 2)</math>?
 +
<cmath> \begin{bmatrix} . & ? &.&.&. \\ .&.&.&48&.\\ 12&.&.&.&.\\ .&.&16&.&.\\ .&.&.&.&0\end{bmatrix}</cmath>
 +
 
 +
 
 +
<math>\textbf{(A)}~19\qquad\textbf{(B)}~24\qquad\textbf{(C)}~29\qquad\textbf{(D)}~34\qquad\textbf{(E)}~39</math>
  
<math>\textbf{(A)}\ \frac52\qquad\textbf{(B)}\ \frac{11}{4}\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ \frac{13}{4}\qquad\textbf{(E)}\ \frac72</math>
+
[[2024 AMC 10A Problems/Problem 21|Solution]]
  
 
==Problem 22==
 
==Problem 22==
A lampshade is made in the form of the lateral surface of the frustum of a right circular cone. The height of the frustum is <math>3\sqrt3</math> inches, its top diameter is <math>6</math> inches, and its bottom diameter is <math>12</math> inches. A bug is at the bottom of the lampshade and there is a glob of honey on the top edge of the lampshade at the spot farthest from the bug. The bug wants to crawl to the honey, but it must stay on the surface of the lampshade. What is the length in inches of its shortest path to the honey?
 
  
<math>\textbf{(A) } 6 + 3\pi\qquad \textbf{(B) }6 + 6\pi\qquad \textbf{(C) } 6\sqrt3 \qquad \textbf{(D) } 6\sqrt5 \qquad \textbf{(E) } 6\sqrt3 + \pi</math>
+
Let <math>\mathcal K</math> be the kite formed by joining two right triangles with legs <math>1</math> and <math>\sqrt3</math> along a common hypotenuse. Eight copies of <math>\mathcal K</math> are used to form the polygon shown below. What is the area of triangle <math>\Delta ABC</math>? [[File:Screenshot_2024-11-08_3.23.29_PM.png]]
 +
 
 +
<math>\textbf{(A) }2+3\sqrt3\qquad\textbf{(B) }\dfrac92\sqrt3\qquad\textbf{(C) }\dfrac{10+8\sqrt3}{3}\qquad\textbf{(D) }8\qquad\textbf{(E) }5\sqrt3</math>
 +
 
 +
[[2024 AMC 10A Problems/Problem 22|Solution]]
  
 
==Problem 23==
 
==Problem 23==
Let <math>f</math> be the unique function defined on the positive integers such that <cmath>\sum_{d\mid n}d\cdot f\left(\frac{n}{d}\right)=1</cmath> for all positive integers <math>n</math>. What is <math>f(2023)</math>?
 
  
<math>\textbf{(A)}~-1536\qquad\textbf{(B)}~96\qquad\textbf{(C)}~108\qquad\textbf{(D)}~116\qquad\textbf{(E)}~144</math>
+
Integers <math>a</math>, <math>b</math>, and <math>c</math> satisfy <math>ab + c = 100</math>, <math>bc + a = 87</math>, and <math>ca + b = 60</math>. What is <math>ab + bc + ca?</math>
 +
 
 +
<math>
 +
\textbf{(A) }212 \qquad
 +
\textbf{(B) }247 \qquad
 +
\textbf{(C) }258 \qquad
 +
\textbf{(D) }276 \qquad
 +
\textbf{(E) }284 \qquad
 +
</math>
 +
 
 +
[[2024 AMC 10A Problems/Problem 23|Solution]]
  
 
==Problem 24==
 
==Problem 24==
Let <math>a</math>, <math>b</math>, and <math>c</math> be positive integers with <math>a\ge</math> <math>b\ge</math> <math>c</math> such that
 
<math>a^2-b^2-c^2+ab=2011</math> and
 
<math>a^2+3b^2+3c^2-3ab-2ac-2bc=-1997</math>.
 
  
What is <math>a</math>?
+
A bee is moving in three-dimensional space. A fair six-sided die with faces labeled <math>A^+, A^-, B^+, B^-, C^+,</math> and <math>C^-</math> is rolled. Suppose the bee occupies the point <math>(a,b,c).</math> If the die shows <math>A^+</math>, then the bee moves to the point <math>(a+1,b,c)</math> and if the die shows <math>A^-,</math> then the bee moves to the point <math>(a-1,b,c).</math> Analogous moves are made with the other four outcomes. Suppose the bee starts at the point <math>(0,0,0)</math> and the die is rolled four times. What is the probability that the bee traverses four distinct edges of some unit cube?
 +
 
 +
<math>\textbf{(A) }\frac{1}{54}\qquad\textbf{(B) }\frac{7}{54}\qquad\textbf{(C) }\frac{1}{6}\qquad\textbf{(D) }\frac{5}{18}\qquad\textbf{(E) }\frac{2}{5}</math>
  
<math> \textbf{(A)}\ 249\qquad\textbf{(B)}\ 250\qquad\textbf{(C)}\ 251\qquad\textbf{(D)}\ 252\qquad\textbf{(E)}\ 253 </math>
+
[[2024 AMC 10A Problems/Problem 24|Solution]]
  
 
==Problem 25==
 
==Problem 25==
 +
The figure below shows a dotted grid <math>8</math> cells wide and <math>3</math> cells tall consisting of <math>1''\times1''</math> squares. Carl places <math>1</math>-inch toothpicks along some of the sides of the squares to create a closed loop that does not intersect itself. The numbers in the cells indicate the number of sides of that square that are to be covered by toothpicks, and any number of toothpicks are allowed if no number is written. In how many ways can Carl place the toothpicks?
 +
<asy>
 +
size(6cm);
 +
for (int i=0; i<9; ++i) {
 +
  draw((i,0)--(i,3),dotted);
 +
}
 +
for (int i=0; i<4; ++i){
 +
  draw((0,i)--(8,i),dotted);
 +
}
 +
for (int i=0; i<8; ++i) {
 +
  for (int j=0; j<3; ++j) {
 +
    if (j==1) {
 +
      label("1",(i+0.5,1.5));
 +
}}}
 +
</asy>
 +
<math>\textbf{(A) }130\qquad\textbf{(B) }144\qquad\textbf{(C) }146\qquad\textbf{(D) }162\qquad\textbf{(E) }196</math>
  
A rectangular box measures <math>a \times b \times c</math>, where <math>a</math>, <math>b</math>, and <math>c</math> are integers and <math>1\leq a \leq b \leq c</math>. The volume and the surface area of the box are numerically equal. How many ordered triples <math>(a,b,c)</math> are possible?
+
[[2024 AMC 10A Problems/Problem 25|Solution]]
 
 
<math>\textbf{(A)}\; 4 \qquad\textbf{(B)}\; 10 \qquad\textbf{(C)}\; 12 \qquad\textbf{(D)}\; 21 \qquad\textbf{(E)}\; 26</math>
 
  
 
==See also==
 
==See also==
Line 195: Line 244:
 
* [[Mathematics competitions]]
 
* [[Mathematics competitions]]
 
* [[Mathematics competition resources]]
 
* [[Mathematics competition resources]]
These problems are NOT copyrighted by the MAA
 

Latest revision as of 15:54, 21 November 2024

2024 AMC 10A (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the SAT if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

What is the value of $9901\cdot101-99\cdot10101?$

$\textbf{(A)}~2\qquad\textbf{(B)}~20\qquad\textbf{(C)}~200\qquad\textbf{(D)}~202\qquad\textbf{(E)}~2020$

Solution

Problem 2

A model used to estimate the time it will take to hike to the top of the mountain on a trail is of the form $T=aL+bG,$ where $a$ and $b$ are constants, $T$ is the time in minutes, $L$ is the length of the trail in miles, and $G$ is the altitude gain in feet. The model estimates that it will take $69$ minutes to hike to the top if a trail is $1.5$ miles long and ascends $800$ feet, as well as if a trail is $1.2$ miles long and ascends $1100$ feet. How many minutes does the model estimates it will take to hike to the top if the trail is $4.2$ miles long and ascends $4000$ feet?

$\textbf{(A) }240\qquad\textbf{(B) }246\qquad\textbf{(C) }252\qquad\textbf{(D) }258\qquad\textbf{(E) }264$

Solution

Problem 3

What is the sum of the digits of the smallest prime that can be written as a sum of $5$ distinct primes?

$\textbf{(A) }5\qquad\textbf{(B) }7\qquad\textbf{(C) }8\qquad\textbf{(D) }10\qquad\textbf{(E) }13$

Solution

Problem 4

The number $2024$ is written as the sum of not necessarily distinct two-digit numbers. What is the least number of two-digit numbers needed to write this sum?

$\textbf{(A) }20\qquad\textbf{(B) }21\qquad\textbf{(C) }22\qquad\textbf{(D) }23\qquad\textbf{(E) }24$

Solution

Problem 5

What is the least value of $n$ such that $n!$ is a multiple of $2024$?

$\textbf{(A) } 11\qquad\textbf{(B) } 21\qquad\textbf{(C) } 22\qquad\textbf{(D) } 23\qquad\textbf{(E) } 253$

Solution

Problem 6

What is the minimum number of successive swaps of adjacent letters in the string $ABCDEF$ that are needed to change the string to $FEDCBA?$ (For example, $3$ swaps are required to change $ABC$ to $CBA;$ one such sequence of swaps is $ABC\to BAC\to BCA\to CBA.$)

$\textbf{(A)}~6\qquad\textbf{(B)}~10\qquad\textbf{(C)}~12\qquad\textbf{(D)}~15\qquad\textbf{(E)}~24$

Solution

Problem 7

The product of three integers is $60$. What is the least possible positive sum of the three integers?

$\textbf{(A) }2\qquad\textbf{(B) }3\qquad\textbf{(C) }5\qquad\textbf{(D) }6\qquad\textbf{(E) }13$

Solution

Problem 8

Amy, Bomani, Charlie, and Daria work in a chocolate factory. On Monday Amy, Bomani, and Charlie started working at $1:00 PM$ and were able to pack $4$, $3$, and $3$ packages, respectively, every $3$ minutes. At some later time, Daria joined the group, and Daria was able to pack $5$ packages every $4$ minutes. Together, they finished packing $450$ packages at exactly $2:45 PM$. At what time did Daria join the group?

$\textbf{(A) }1:25\text{ PM}\qquad\textbf{(B) }1:35\text{ PM}\qquad\textbf{(C) }1:45\text{ PM}\qquad\textbf{(D) }1:55\text{ PM}\qquad\textbf{(E) }2:05\text{ PM}$

Solution

Problem 9

In how many ways can $6$ juniors and $6$ seniors form $3$ disjoint teams of $4$ people so that each team has $2$ juniors and $2$ seniors?

$\textbf{(A) }720\qquad\textbf{(B) }1350\qquad\textbf{(C) }2700\qquad\textbf{(D) }3280\qquad\textbf{(E) }8100$

Solution

Problem 10

Consider the following operation. Given a positive integer $n$, if $n$ is a multiple of $3$, then you replace $n$ by $\frac{n}{3}$. If $n$ is not a multiple of $3$, then you replace $n$ by $n+10$. For example, beginning with $n=4$, this procedure gives $4\to14\to24\to8\to18\to6\to2\to12\to\cdots$. Suppose you start with $n=100$. What value results if you perform this operation exactly $100$ times?

$\textbf{(A) }10\qquad\textbf{(B) }20\qquad\textbf{(C) }30\qquad\textbf{(D) }40\qquad\textbf{(E) }50$

Solution

Problem 11

How many ordered pairs of integers $(m, n)$ satisfy $\sqrt{n^2 - 49} = m$?

$\textbf{(A)}~1\qquad\textbf{(B)}~2\qquad\textbf{(C)}~3\qquad\textbf{(D)}~4\qquad\textbf{(E)}$ Infinitely many

Solution

Problem 12

Zelda played the Adventures of Math game on August 1 and scored $1,700$ points. She continued to play daily over the next $5$ days. The bar chart below shows the daily change in her score compared to the day before. (For example, Zelda's score on August 2 was $1,700 + 80 = 1,780$ points.) What was Zelda's average score in points over the $6$ days?Screenshot 2024-11-08 1.51.51 PM.png

$\textbf{(A)}~1700\qquad\textbf{(B)}~1702\qquad\textbf{(C)}~1703\qquad\textbf{(D)}~1713\qquad\textbf{(E)}~1715$

Solution

Problem 13

Two transformations are said to commute if applying the first followed by the second gives the same result as applying the second followed by the first. Consider these four transformations of the coordinate plane:

  • a translation $2$ units to the right,
  • a $90^{\circ}$-rotation counterclockwise about the origin,
  • a reflection across the $x$-axis, and
  • a dilation centered at the origin with scale factor $2.$

Of the $6$ pairs of distinct transformations from this list, how many commute?

$\textbf{(A)}~1\qquad\textbf{(B)}~2\qquad\textbf{(C)}~3\qquad\textbf{(D)}~4\qquad\textbf{(E)}~5$

Solution

Problem 14

One side of an equilateral triangle of height $24$ lies on line $\ell$. A circle of radius $12$ is tangent to line $\ell$ and is externally tangent to the triangle. The area of the region exterior to the triangle and the circle and bounded by the triangle, the circle, and line $\ell$ can be written as $a \sqrt{b} - c \pi$, where $a$, $b$, and $c$ are positive integers and $b$ is not divisible by the square of any prime. What is $a + b + c$?

$\textbf{(A)}~72\qquad\textbf{(B)}~73\qquad\textbf{(C)}~74\qquad\textbf{(D)}~75\qquad\textbf{(E)}~76$

Solution

Problem 15

Let $M$ be the greatest integer such that both $M+1213$ and $M+3773$ are perfect squares. What is the units digit of $M$?

$\textbf{(A) }1\qquad\textbf{(B) }2\qquad\textbf{(C) }3\qquad\textbf{(D) }6\qquad\textbf{(E) }8$

Solution

Problem 16

All of the rectangles in the figure below, which is drawn to scale, are similar to the enclosing rectangle. Each number represents the area of the rectangle. What is length $AB$? $\newline$ Screenshot 2024-11-08 2.08.49 PM.png $\textbf{(A) }4+4\sqrt5\qquad\textbf{(B) }10\sqrt2\qquad\textbf{(C) }5+5\sqrt5\qquad\textbf{(D) }10\sqrt[4]{8}\qquad\textbf{(E) }20$

Solution

Problem 17

Two teams are in a best-two-out-of-three playoff: the teams will play at most $3$ games, and the winner of the playoff is the first team to win $2$ games. The first game is played on Team A's home field, and the remaining games are played on Team B's home field. Team A has a $\frac{2}{3}$ chance of winning at home, and its probability of winning when playing away from home is $p$. Outcomes of the games are independent. The probability that Team A wins the playoff is $\frac{1}{2}$. Then $p$ can be written in the form $\frac{1}{2}(m - \sqrt{n})$, where $m$ and $n$ are positive integers. What is $m+n$?

$\textbf{(A)}~10\qquad\textbf{(B)}~11\qquad\textbf{(C)}~12\qquad\textbf{(D)}~13\qquad\textbf{(E)}~14$

Solution

Problem 18

There are exactly $K$ positive integers $5 \leq b \leq 2024$ such that the base-$b$ integer $2024_{b}$ is divisible by $16$(where $16$ is in base ten). What is the sum of the digits of $K$?

$\textbf{(A)}~16\qquad\textbf{(B)}~17\qquad\textbf{(C)}~18\qquad\textbf{(D)}~20\qquad\textbf{(E)}~21$

Solution

Problem 19

The first three terms of a geometric sequence are the integers $a, 720$ and $b$, where $a < 720 < b$. What is the sum of the digits of the least possible value of $b$?

$\textbf{(A) } 9\qquad\textbf{(B) } 12\qquad\textbf{(C) } 16\qquad\textbf{(D) } 18\qquad\textbf{(E) } 21$

Solution

Problem 20

Let $S$ be a subset of $\{1, 2, 3, \dots, 2024\}$ such that the following two conditions hold: $\linebreak$

  • If $x$ and $y$ are distinct elements of $S$, then $|x-y| > 2.$ $\newline$
  • If $x$ and $y$ are distinct odd elements of $S$, then $|x-y| > 6.$ $\newline$

What is the maximum possible number of elements in $S$?

$\textbf{(A) }436 \qquad \textbf{(B) }506 \qquad \textbf{(C) }608 \qquad \textbf{(D) }654 \qquad \textbf{(E) }675 \qquad$

Solution

Problem 21

The numbers, in order, of each row and the numbers, in order, of each column of a $5 \times 5$ array of integers form an arithmetic progression of length $5$. The numbers in positions $(5, 5)$, $(2, 4)$, $(4, 3)$ and $(3, 1)$ are $0$, $48$, $16$, and $12$, respectively. What number is in position $(1, 2)$? \[\begin{bmatrix} . & ? &.&.&. \\ .&.&.&48&.\\ 12&.&.&.&.\\ .&.&16&.&.\\ .&.&.&.&0\end{bmatrix}\]


$\textbf{(A)}~19\qquad\textbf{(B)}~24\qquad\textbf{(C)}~29\qquad\textbf{(D)}~34\qquad\textbf{(E)}~39$

Solution

Problem 22

Let $\mathcal K$ be the kite formed by joining two right triangles with legs $1$ and $\sqrt3$ along a common hypotenuse. Eight copies of $\mathcal K$ are used to form the polygon shown below. What is the area of triangle $\Delta ABC$? Screenshot 2024-11-08 3.23.29 PM.png

$\textbf{(A) }2+3\sqrt3\qquad\textbf{(B) }\dfrac92\sqrt3\qquad\textbf{(C) }\dfrac{10+8\sqrt3}{3}\qquad\textbf{(D) }8\qquad\textbf{(E) }5\sqrt3$

Solution

Problem 23

Integers $a$, $b$, and $c$ satisfy $ab + c = 100$, $bc + a = 87$, and $ca + b = 60$. What is $ab + bc + ca?$

$\textbf{(A) }212 \qquad \textbf{(B) }247 \qquad \textbf{(C) }258 \qquad \textbf{(D) }276 \qquad \textbf{(E) }284 \qquad$

Solution

Problem 24

A bee is moving in three-dimensional space. A fair six-sided die with faces labeled $A^+, A^-, B^+, B^-, C^+,$ and $C^-$ is rolled. Suppose the bee occupies the point $(a,b,c).$ If the die shows $A^+$, then the bee moves to the point $(a+1,b,c)$ and if the die shows $A^-,$ then the bee moves to the point $(a-1,b,c).$ Analogous moves are made with the other four outcomes. Suppose the bee starts at the point $(0,0,0)$ and the die is rolled four times. What is the probability that the bee traverses four distinct edges of some unit cube?

$\textbf{(A) }\frac{1}{54}\qquad\textbf{(B) }\frac{7}{54}\qquad\textbf{(C) }\frac{1}{6}\qquad\textbf{(D) }\frac{5}{18}\qquad\textbf{(E) }\frac{2}{5}$

Solution

Problem 25

The figure below shows a dotted grid $8$ cells wide and $3$ cells tall consisting of $1''\times1''$ squares. Carl places $1$-inch toothpicks along some of the sides of the squares to create a closed loop that does not intersect itself. The numbers in the cells indicate the number of sides of that square that are to be covered by toothpicks, and any number of toothpicks are allowed if no number is written. In how many ways can Carl place the toothpicks? [asy] size(6cm); for (int i=0; i<9; ++i) {   draw((i,0)--(i,3),dotted); } for (int i=0; i<4; ++i){   draw((0,i)--(8,i),dotted); } for (int i=0; i<8; ++i) {   for (int j=0; j<3; ++j) {     if (j==1) {       label("1",(i+0.5,1.5)); }}} [/asy] $\textbf{(A) }130\qquad\textbf{(B) }144\qquad\textbf{(C) }146\qquad\textbf{(D) }162\qquad\textbf{(E) }196$

Solution

See also

2024 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
2023 AMC 10B Problems
Followed by
2024 AMC 10B Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions