Difference between revisions of "2004 AMC 10B Problems/Problem 24"
(→Solution 1) |
(→Solution 1 (Ptolemy's Theorem)) |
||
(6 intermediate revisions by 4 users not shown) | |||
Line 5: | Line 5: | ||
<math>\text{(A) } \dfrac{9}{8} \qquad \text{(B) } \dfrac{5}{3} \qquad \text{(C) } 2 \qquad \text{(D) } \dfrac{17}{7} \qquad \text{(E) } \dfrac{5}{2}</math> | <math>\text{(A) } \dfrac{9}{8} \qquad \text{(B) } \dfrac{5}{3} \qquad \text{(C) } 2 \qquad \text{(D) } \dfrac{17}{7} \qquad \text{(E) } \dfrac{5}{2}</math> | ||
− | == Solution 1 - | + | == Solution 1 - (Ptolemy's Theorem) == |
− | Set <math>\overline{BD}</math>'s length as <math>x</math>. <math>\overline{CD}</math>'s length must also be <math>x</math> since <math>\angle BAD</math> and <math>\angle DAC</math> intercept arcs of equal length (because <math>\angle BAD=\angle DAC</math>). Using [[ | + | Set <math>\overline{BD}</math>'s length as <math>x</math>. <math>\overline{CD}</math>'s length must also be <math>x</math> since <math>\angle BAD</math> and <math>\angle DAC</math> intercept arcs of equal length (because <math>\angle BAD=\angle DAC</math>). Using [[Ptolemy's Theorem]], <math>7x+8x=9(AD)</math>. The ratio is <math>\frac{5}{3}\implies\boxed{\text{(B)}}</math> |
==Solution 2 - Similarity Proportion== | ==Solution 2 - Similarity Proportion== | ||
Line 49: | Line 49: | ||
<math>\dfrac{AD}{7} = \dfrac{CD}{\tfrac{21}{5}} \implies \dfrac{AD}{CD} = {\dfrac{5}{3}} = \boxed{\text{(B)}}</math>. | <math>\dfrac{AD}{7} = \dfrac{CD}{\tfrac{21}{5}} \implies \dfrac{AD}{CD} = {\dfrac{5}{3}} = \boxed{\text{(B)}}</math>. | ||
− | ==Solution 3 - | + | ==Solution 3 - Angle Bisector Theorem== |
We know that <math>\overline{AD}</math> bisects <math>\angle BAC</math>, so <math>\angle BAD = \angle CAD</math>. Additionally, <math>\angle BAD</math> and <math>\angle BCD</math> subtend the same arc, giving <math>\angle BAD = \angle BCD</math>. Similarly, <math>\angle CAD = \angle CBD</math> and <math>\angle ABC = \angle ADC</math>. | We know that <math>\overline{AD}</math> bisects <math>\angle BAC</math>, so <math>\angle BAD = \angle CAD</math>. Additionally, <math>\angle BAD</math> and <math>\angle BCD</math> subtend the same arc, giving <math>\angle BAD = \angle BCD</math>. Similarly, <math>\angle CAD = \angle CBD</math> and <math>\angle ABC = \angle ADC</math>. | ||
− | These angle relationships tell us that <math>\triangle ABE\sim \triangle ADC</math> by AA Similarity, so <math>AD/CD = AB/BE</math>. By the angle bisector theorem, <math>AB/BE = AC/ | + | These angle relationships tell us that <math>\triangle ABE\sim \triangle ADC</math> by AA Similarity, so <math>AD/CD = AB/BE</math>. By the angle bisector theorem, <math>AB/BE = AC/CE</math>. Hence, |
− | <cmath>\frac{AB}{BE} = \frac{AC}{ | + | <cmath>\frac{AB}{BE} = \frac{AC}{CE} = \frac{AB + AC}{BE + CE} = \frac{AB + AC}{BC} = \frac{7 + 8}{9} = \frac{15}{9} = \boxed{\frac{5}{3}}.</cmath> |
+ | |||
+ | (Where did E come from?????) | ||
--vaporwave | --vaporwave | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== See Also == | == See Also == |
Latest revision as of 14:41, 2 November 2024
Contents
Problem
In triangle we have , , . Point is on the circumscribed circle of the triangle so that bisects angle . What is the value of ?
Solution 1 - (Ptolemy's Theorem)
Set 's length as . 's length must also be since and intercept arcs of equal length (because ). Using Ptolemy's Theorem, . The ratio is
Solution 2 - Similarity Proportion
Let . Observe that because they both subtend arc
Furthermore, because is an angle bisector, so by similarity. Then . By the Angle Bisector Theorem, , so . This in turn gives . Plugging this into the similarity proportion gives: .
Solution 3 - Angle Bisector Theorem
We know that bisects , so . Additionally, and subtend the same arc, giving . Similarly, and .
These angle relationships tell us that by AA Similarity, so . By the angle bisector theorem, . Hence,
(Where did E come from?????)
--vaporwave
See Also
2004 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.