Difference between revisions of "2024 IMO Problems/Problem 2"
(Created page with "Find all positive integer pairs <math>(a,b),</math> such that there exists positive integer <math>g,N,</math> <cmath>\gcd (a^n+b,b^n+a)=g</cmath> holds for all integer <math>n...") |
(→Video Solution(Fermat's little theorem,In Chinese)) |
||
(6 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
Find all positive integer pairs <math>(a,b),</math> such that there exists positive integer <math>g,N,</math> | Find all positive integer pairs <math>(a,b),</math> such that there exists positive integer <math>g,N,</math> | ||
<cmath>\gcd (a^n+b,b^n+a)=g</cmath> | <cmath>\gcd (a^n+b,b^n+a)=g</cmath> | ||
− | holds for all integer <math>n\ge N</math> | + | holds for all integer <math>n\ge N</math>. |
+ | |||
+ | ==Video Solution== | ||
+ | https://www.youtube.com/watch?v=VXFG1t_ksfI (including motivation to derive solution) | ||
+ | ==Video Solution(Fermat's little theorem,In English)== | ||
+ | https://youtu.be/QTBcTtY46HI | ||
+ | ==Video Solution(Fermat's little theorem,In Chinese)== | ||
+ | https://youtu.be/8WOff2j0giY | ||
+ | ==Video Solution== | ||
+ | https://youtu.be/5SZUbbxoK1M | ||
+ | |||
+ | ==See Also== | ||
+ | |||
+ | {{IMO box|year=2024|num-b=1|num-a=3}} |
Latest revision as of 20:50, 30 September 2024
Find all positive integer pairs such that there exists positive integer holds for all integer .
Contents
Video Solution
https://www.youtube.com/watch?v=VXFG1t_ksfI (including motivation to derive solution)
Video Solution(Fermat's little theorem,In English)
Video Solution(Fermat's little theorem,In Chinese)
Video Solution
See Also
2024 IMO (Problems) • Resources | ||
Preceded by Problem 1 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 3 |
All IMO Problems and Solutions |