Difference between revisions of "1965 AHSME Problems/Problem 37"

(Add problem statement)
(diagram)
 
(3 intermediate revisions by the same user not shown)
Line 12: Line 12:
 
== Solution ==
 
== Solution ==
  
We use mass points for this problem. Let <math>\text{m} A</math> denote the mass of point <math>A</math>.
+
<asy>
 +
 
 +
import geometry;
 +
 
 +
point A = (0,0);
 +
point B = (16,0);
 +
point C = (3, 10);
 +
point D, E, F;
 +
real d;
 +
 
 +
// Triangle ABC
 +
draw(A--B--C--A);
 +
dot(A);
 +
label("A", A, SW);
 +
dot(B);
 +
label("B", B, SE);
 +
dot(C);
 +
label("C", C, NW);
 +
 
 +
// Segments AD and CE
 +
D = 2/3*C+1/3*B;
 +
dot(D);
 +
label("D", D, NE);
 +
draw(A--D);
 +
E = midpoint(A--midpoint(A--B));
 +
dot(E);
 +
label("E", E, S);
 +
draw(C--E);
 +
 
 +
// Point F
 +
pair[] f=intersectionpoints((A--D), (C--E));
 +
F=f[0];
 +
dot(F);
 +
label("F", F, SE);
 +
 
 +
</asy>
 +
 
 +
We use [[mass points]] for this problem. Let <math>\text{m} A</math> denote the mass of point <math>A</math>.
 
Rewrite the expression we are finding as  
 
Rewrite the expression we are finding as  
 
<cmath>\frac{EF}{FC} + \frac{AF}{FD} = \frac{FE}{FC} + \frac{FA}{FD} = \frac{\text{m} C}{\text{m} E} + \frac{\text{m} D}{\text{m} A}</cmath>
 
<cmath>\frac{EF}{FC} + \frac{AF}{FD} = \frac{FE}{FC} + \frac{FA}{FD} = \frac{\text{m} C}{\text{m} E} + \frac{\text{m} D}{\text{m} A}</cmath>
Line 20: Line 57:
  
 
<cmath>\frac{\text{m} C}{\text{m} E} + \frac{\text{m} D}{\text{m} A} = \frac{2}{4} + \frac{3}{3} = \frac{1}{2} + 1 = \frac{3}{2}</cmath>
 
<cmath>\frac{\text{m} C}{\text{m} E} + \frac{\text{m} D}{\text{m} A} = \frac{2}{4} + \frac{3}{3} = \frac{1}{2} + 1 = \frac{3}{2}</cmath>
<math>\boxed{C}</math>
+
This answer corresponds to <math>\fbox{\textbf{(C)}}</math>.
  
 
~JustinLee2017
 
~JustinLee2017
 +
 +
== See Also ==
 +
{{AHSME 40p box|year=1965|num-b=36|num-a=38}}
 +
{{MAA Notice}}
 +
[[Category:Intermediate Geometry Problems]]

Latest revision as of 09:38, 20 July 2024

Problem

Point $E$ is selected on side $AB$ of $\triangle{ABC}$ in such a way that $AE: EB = 1: 3$ and point $D$ is selected on side $BC$ such that $CD: DB = 1: 2$. The point of intersection of $AD$ and $CE$ is $F$. Then $\frac {EF}{FC} + \frac {AF}{FD}$ is:

$\textbf{(A)}\ \frac {4}{5} \qquad  \textbf{(B) }\ \frac {5}{4} \qquad  \textbf{(C) }\ \frac {3}{2} \qquad  \textbf{(D) }\ 2\qquad \textbf{(E) }\ \frac{5}{2}$

Solution

[asy]  import geometry;  point A = (0,0); point B = (16,0); point C = (3, 10); point D, E, F; real d;  // Triangle ABC draw(A--B--C--A); dot(A); label("A", A, SW); dot(B); label("B", B, SE); dot(C); label("C", C, NW);  // Segments AD and CE D = 2/3*C+1/3*B; dot(D); label("D", D, NE); draw(A--D); E = midpoint(A--midpoint(A--B)); dot(E); label("E", E, S); draw(C--E);  // Point F pair[] f=intersectionpoints((A--D), (C--E)); F=f[0]; dot(F); label("F", F, SE);  [/asy]

We use mass points for this problem. Let $\text{m} A$ denote the mass of point $A$. Rewrite the expression we are finding as \[\frac{EF}{FC} + \frac{AF}{FD} = \frac{FE}{FC} + \frac{FA}{FD} = \frac{\text{m} C}{\text{m} E} + \frac{\text{m} D}{\text{m} A}\] Now, let $\text{m} C = 2$. We then have $2 \cdot 1 = \text{m} B \cdot 2$, so $\text{m} B = 1$, and $\text{m} D = 2+1 = 3$ We can let $\text{m} A = 3$. We have $\text{m} E = \text{m} A + \text{m} B = 3+1 = 4$ From here, substitute the respective values to get

\[\frac{\text{m} C}{\text{m} E} + \frac{\text{m} D}{\text{m} A} = \frac{2}{4} + \frac{3}{3} = \frac{1}{2} + 1 = \frac{3}{2}\] This answer corresponds to $\fbox{\textbf{(C)}}$.

~JustinLee2017

See Also

1965 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 36
Followed by
Problem 38
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png