Difference between revisions of "1965 AHSME Problems/Problem 18"

(Add problem statement)
m (maa notice)
 
(2 intermediate revisions by the same user not shown)
Line 11: Line 11:
 
== Solution ==
 
== Solution ==
  
<math> \frac{1}{1 + y} = \frac{1 - y}{1 - y^2}</math>
+
The error made in this approximation is <math>\frac{1}{1+y}-(1-y)</math>, and the correct value is <math>\frac{1}{1+y}</math>. Taking the ratio of these two values, we have:
 +
\begin{align*} \\
 +
\frac{\frac{1}{1+y}-(1-y)}{\frac{1}{1+y}}&=\frac{[\frac{1}{1+y}-(1-y)][1+y]}{[\frac{1}{1+y}][1+y]} \\
 +
&=\frac{1-(1-y^2)}{1} \\
 +
&=y^2 \\
 +
\end{align*}
  
<math> \frac{1 - y}{\frac{1 - y}{1 - y^2}} = 1 - y^2</math>
+
Thus, our answer is <math>\boxed{\textbf{(B) }y^2}</math>
  
<math> \boxed{(B) y^2}</math>
+
==See Also==
 +
{{AHSME 40p box|year=1965|num-b=17|num-a=19}}
 +
{{MAA Notice}}
 +
 
 +
[[Category:Introductory Algebra Problems]]

Latest revision as of 15:57, 18 July 2024

Problem

If $1 - y$ is used as an approximation to the value of $\frac {1}{1 + y}, |y| < 1$, the ratio of the error made to the correct value is:

$\textbf{(A)}\ y \qquad  \textbf{(B) }\ y^2 \qquad  \textbf{(C) }\ \frac {1}{1 + y} \qquad  \textbf{(D) }\ \frac{y}{1+y}\qquad \textbf{(E) }\ \frac{y^2}{1+y}\qquad$

Solution

The error made in this approximation is $\frac{1}{1+y}-(1-y)$, and the correct value is $\frac{1}{1+y}$. Taking the ratio of these two values, we have: \begin{align*} \\ \frac{\frac{1}{1+y}-(1-y)}{\frac{1}{1+y}}&=\frac{[\frac{1}{1+y}-(1-y)][1+y]}{[\frac{1}{1+y}][1+y]} \\ &=\frac{1-(1-y^2)}{1} \\ &=y^2 \\ \end{align*}

Thus, our answer is $\boxed{\textbf{(B) }y^2}$

See Also

1965 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png