Difference between revisions of "Vieta's formulas"
m (→Introductory) |
(→Introductory) |
||
Line 24: | Line 24: | ||
* [[2010 AMC 10A Problems/Problem 21 | 2010 AMC 10A Problem 21]] | * [[2010 AMC 10A Problems/Problem 21 | 2010 AMC 10A Problem 21]] | ||
* [[2003 AMC 10A Problems/Problem 18 | 2003 AMC 10A Problem 18]] | * [[2003 AMC 10A Problems/Problem 18 | 2003 AMC 10A Problem 18]] | ||
+ | * [[2021 AMC 12A Problems/Problem 12 | 2021 AMC 12A Problem 12]] | ||
=== Intermediate === | === Intermediate === |
Latest revision as of 20:24, 21 October 2024
In algebra, Vieta's formulas are a set of results that relate the coefficients of a polynomial to its roots. In particular, it states that the elementary symmetric polynomials of its roots can be easily expressed as a ratio between two of the polynomial's coefficients.
It is among the most ubiquitous results to circumvent finding a polynomial's roots in competition math and sees widespread usage in many math contests/tournaments.
Statement
Let be any polynomial with complex coefficients with roots
, and let
be the
elementary symmetric polynomial of the roots.
Vieta’s formulas then state that
This can be compactly summarized as
for some
such that
.
Proof
Let all terms be defined as above. By the factor theorem, . We will then prove Vieta’s formulas by expanding this polynomial and comparing the resulting coefficients with the original polynomial’s coefficients.
When expanding the factorization of , each term is generated by a series of
choices of whether to include
or the negative root
from every factor
. Consider all the expanded terms of the polynomial with degree
; they are formed by multiplying a choice of
negative roots, making the remaining
choices in the product
, and finally multiplying by the constant
.
Note that adding together every multiplied choice of negative roots yields
. Thus, when we expand
, the coefficient of
is equal to
. However, we defined the coefficient of
to be
. Thus,
, or
, which completes the proof.
Problems
Here are some problems with solutions that utilize Vieta's quadratic formulas:
Introductory
- 2005 AMC 12B Problem 12
- 2007 AMC 12A Problem 21
- 2010 AMC 10A Problem 21
- 2003 AMC 10A Problem 18
- 2021 AMC 12A Problem 12