Difference between revisions of "2014 AMC 8 Problems/Problem 15"

m (Solution)
(Formatting, add solution)
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
==Problem==
+
== Problem ==
 +
 
 
The circumference of the circle with center <math>O</math> is divided into <math>12</math> equal arcs, marked the letters <math>A</math> through <math>L</math> as seen below. What is the number of degrees in the sum of the angles <math>x</math> and <math>y</math>?
 
The circumference of the circle with center <math>O</math> is divided into <math>12</math> equal arcs, marked the letters <math>A</math> through <math>L</math> as seen below. What is the number of degrees in the sum of the angles <math>x</math> and <math>y</math>?
  
Line 23: Line 24:
 
<math> \textbf{(A) }75\qquad\textbf{(B) }80\qquad\textbf{(C) }90\qquad\textbf{(D) }120\qquad\textbf{(E) }150 </math>
 
<math> \textbf{(A) }75\qquad\textbf{(B) }80\qquad\textbf{(C) }90\qquad\textbf{(D) }120\qquad\textbf{(E) }150 </math>
  
==Video Solution (CREATIVE THINKING)==
+
== Solution 1 ==
 +
 
 +
The measure of an inscribed angle is half the measure of its corresponding central angle. Since each unit arc is <math>\frac{1}{12}</math> of the circle's circumference, each unit central angle measures <math>\frac{360}{12}^{\circ}=30^{\circ}</math>. From this, <math>\angle EOG = 60^{\circ}</math>, so <math>x = 30^{\circ}</math>. Also, <math>\angle AOI = 120^{\circ}</math>, so <math>y = 60^{\circ}</math>. The number of degrees in the sum of both angles is <math>30 + 60 = \boxed{(C)\ 90}.</math>
 +
 
 +
== Solution 2 ==
 +
 
 +
Since <math>\triangle AOE</math> is isosceles and <math>\angle AOE = \frac{4}{12} \cdot 360^{\circ} = 120^{\circ}</math>, <math>x = 30^{\circ}</math>. Since <math>\triangle GOI</math> is isosceles and <math>\angle GOI = \frac{2}{12} \cdot 360^{\circ} = 60^{\circ}</math>, <math>x = 60^{\circ}</math>. The number of degrees in the sum of both angles is <math>30+60 = \boxed{(C)\ 90}</math>.
 +
 
 +
== Video Solution 1 ==
 +
 
 
https://youtu.be/3QHH9xV-QDw
 
https://youtu.be/3QHH9xV-QDw
  
 
~Education, the Study of Everything
 
~Education, the Study of Everything
  
 +
== Video Solution 2 ==
 +
 +
https://www.youtube.com/watch?v=qseG63LK4AU
 +
~David
  
 +
== Video Solution 3 ==
  
==Video Solution==
+
https://youtu.be/aZhjhb3mMfg
https://www.youtube.com/watch?v=qseG63LK4AU  ~David
+
~savannahsolver
  
https://youtu.be/aZhjhb3mMfg ~savannahsolver
+
== Video Solution 4 ==
  
==Video Solution ==
 
 
https://youtu.be/abSgjn4Qs34?t=3242
 
https://youtu.be/abSgjn4Qs34?t=3242
  
==Solution==
+
== See Also ==
For this problem, it is useful to know that the measure of an inscribed angle is half the measure of its corresponding central angle. Since each unit arc is <math>\frac{1}{12}</math> of the circle's circumference, each unit central angle measures <math>\left( \frac{360}{12} \right) ^{\circ}=30^{\circ}</math>. Then, we know that the central angle of x = <math>60</math>, so inscribed angle = <math>30</math>. Also, central angle of y = <math>120</math>, so inscribed angle = <math>60</math>. Summing both inscribed angles gives <math>30 + 60 = \boxed{(C)\ 90}.</math>
 
  
==See Also==
 
 
{{AMC8 box|year=2014|num-b=14|num-a=16}}
 
{{AMC8 box|year=2014|num-b=14|num-a=16}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 16:40, 30 January 2025

Problem

The circumference of the circle with center $O$ is divided into $12$ equal arcs, marked the letters $A$ through $L$ as seen below. What is the number of degrees in the sum of the angles $x$ and $y$?

[asy] size(230); defaultpen(linewidth(0.65)); pair O=origin; pair[] circum = new pair[12]; string[] let = {"$A$","$B$","$C$","$D$","$E$","$F$","$G$","$H$","$I$","$J$","$K$","$L$"}; draw(unitcircle); for(int i=0;i<=11;i=i+1) { circum[i]=dir(120-30*i); dot(circum[i],linewidth(2.5)); label(let[i],circum[i],2*dir(circum[i])); } draw(O--circum[4]--circum[0]--circum[6]--circum[8]--cycle); label("$x$",circum[0],2.75*(dir(circum[0]--circum[4])+dir(circum[0]--circum[6]))); label("$y$",circum[6],1.75*(dir(circum[6]--circum[0])+dir(circum[6]--circum[8]))); label("$O$",O,dir(60)); [/asy]

$\textbf{(A) }75\qquad\textbf{(B) }80\qquad\textbf{(C) }90\qquad\textbf{(D) }120\qquad\textbf{(E) }150$

Solution 1

The measure of an inscribed angle is half the measure of its corresponding central angle. Since each unit arc is $\frac{1}{12}$ of the circle's circumference, each unit central angle measures $\frac{360}{12}^{\circ}=30^{\circ}$. From this, $\angle EOG = 60^{\circ}$, so $x = 30^{\circ}$. Also, $\angle AOI = 120^{\circ}$, so $y = 60^{\circ}$. The number of degrees in the sum of both angles is $30 + 60 = \boxed{(C)\ 90}.$

Solution 2

Since $\triangle AOE$ is isosceles and $\angle AOE = \frac{4}{12} \cdot 360^{\circ} = 120^{\circ}$, $x = 30^{\circ}$. Since $\triangle GOI$ is isosceles and $\angle GOI = \frac{2}{12} \cdot 360^{\circ} = 60^{\circ}$, $x = 60^{\circ}$. The number of degrees in the sum of both angles is $30+60 = \boxed{(C)\ 90}$.

Video Solution 1

https://youtu.be/3QHH9xV-QDw

~Education, the Study of Everything

Video Solution 2

https://www.youtube.com/watch?v=qseG63LK4AU ~David

Video Solution 3

https://youtu.be/aZhjhb3mMfg ~savannahsolver

Video Solution 4

https://youtu.be/abSgjn4Qs34?t=3242

See Also

2014 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png