Difference between revisions of "1982 IMO Problems/Problem 5"
(→Solution 3) |
(→Solution 4) |
||
(5 intermediate revisions by the same user not shown) | |||
Line 37: | Line 37: | ||
Let <math>AM = CN = a </math>. By the cosine rule, | Let <math>AM = CN = a </math>. By the cosine rule, | ||
− | <math>AC = \sqrt{AB^{2} + BC^{2} - 2 \cdot AB \cdot BC \cdot cos \angle BAC} | + | <math>AC = \sqrt{AB^{2} + BC^{2} - 2 \cdot AB \cdot BC \cdot \cos \angle BAC} </math> |
− | = \sqrt{1 + 1 - 2 cos 120^{\circ}} | + | <math>= \sqrt{1 + 1 - 2 \cdot \cos 120^{\circ}} </math> |
− | = \sqrt{3} </math>. | + | <math>= \sqrt{3} </math>. |
− | <math>BM = \sqrt{a^{2} + 1 - 2a \cdot cos 30^{\circ}} | + | <math>BM = \sqrt{a^{2} + 1 - 2a \cdot \cos 30^{\circ}} </math> |
− | = \sqrt{a^{2} - \sqrt{3} \cdot a + 1} </math> | + | <math>= \sqrt{a^{2} - \sqrt{3} \cdot a + 1} </math> |
− | <math>MN = \sqrt{(\sqrt{3} - a)^{2} + a^{2} - 2 \cdot (\sqrt{3} - a) \cdot a \cdot cos \angle MCN} | + | <math>MN = \sqrt{(\sqrt{3} - a)^{2} + a^{2} - 2 \cdot (\sqrt{3} - a) \cdot a \cdot \cos \angle MCN} </math> |
− | = \sqrt{3 + a^{2} - 2\cdot \sqrt{3} \cdot a + a^{2} - \sqrt{3} \cdot a + a^{2}} | + | <math>= \sqrt{3 + a^{2} - 2\cdot \sqrt{3} \cdot a + a^{2} - \sqrt{3} \cdot a + a^{2}} </math> |
− | = \sqrt{3a^{2} - 3\sqrt{3}\cdot a + 3} | + | <math>= \sqrt{3a^{2} - 3\sqrt{3}\cdot a + 3} </math> |
− | = BM \cdot \sqrt{3} </math>. | + | <math>= BM \cdot \sqrt{3} </math>. |
− | Now if B, M, and N are collinear, then <math>\angle AMB = \angle CMN | + | Now if B, M, and N are collinear, then <math>\angle AMB = \angle CMN </math> |
− | \implies sin \angle AMB = sin \angle CMN </math>. | + | <math>\implies \sin \angle AMB = \sin \angle CMN </math>. |
By the law of Sines, | By the law of Sines, | ||
− | <math>\frac{1}{sin \angle AMB} = \frac{BM}{sin 30^{\circ}} = 2BM | + | <math>\frac{1}{\sin \angle AMB} = \frac{BM}{sin 30^{\circ}} = 2BM </math> |
− | \implies sin \angle AMB = \frac{1}{2BM} </math>. | + | <math>\implies \sin \angle AMB = \frac{1}{2BM} </math>. |
Also, | Also, | ||
− | <math>\frac{a}{sin \angle CMN} = \frac{\sqrt{3} \cdot BM}{sin 60^{\circ}} = 2BM | + | <math>\frac{a}{\sin \angle CMN} = \frac{\sqrt{3} \cdot BM}{\sin 60^{\circ}} = 2BM </math> |
− | \implies sin \angle CMN = \frac{a}{2BM} </math>. | + | <math>\implies \sin \angle CMN = \frac{a}{2BM} </math>. |
− | But <math>sin \angle AMB = sin \angle CMN | + | But <math>\sin \angle AMB = \sin \angle CMN </math> |
− | \implies \frac{1}{2BM} = \frac{a}{2BM} </math>, which means <math>a = 1 </math>. So, r = \frac{1}{\sqrt{3}} $. | + | <math>\implies \frac{1}{2BM} = \frac{a}{2BM} </math>, which means <math>a = 1 </math>. So, r = \frac{1}{\sqrt{3}} $. |
Latest revision as of 09:44, 16 June 2024
Problem
The diagonals and of the regular hexagon are divided by inner points and respectively, so thatDetermine if and are collinear.
Solution 1
O is the center of the regular hexagon. Then we clearly have . And therefore we have also obviously , as . So we have and . Because of the quadrilateral is cyclic. . And as we also have we get . . And as we get .
This solution was posted and copyrighted by Kathi. The original thread for this problem can be found here: [1]
Solution 2
Let be the intersection of and . is the mid-point of . Since , , and are collinear, then by Menelaus Theorem, . Let the sidelength of the hexagon be . Then . Substituting them into the first equation yields
This solution was posted and copyrighted by leepakhin. The original thread for this problem can be found here: [2]
Solution 3
Note . From the relation results , i.e.
. Thus,
Therefore, , i.e.
This solution was posted and copyrighted by Virgil. The original thread for this problem can be found hercommunity/p398343]
Solution 4
Let . By the cosine rule,
.
.
Now if B, M, and N are collinear, then
.
By the law of Sines,
.
Also,
.
But
, which means . So, r = \frac{1}{\sqrt{3}} $.