Difference between revisions of "2008 AMC 10B Problems/Problem 3"
Idk12345678 (talk | contribs) |
Idk12345678 (talk | contribs) (→Solution 2) |
||
Line 8: | Line 8: | ||
==Solution 2== | ==Solution 2== | ||
− | Let x = 64. Using substitution, <math>\sqrt[3]{64\sqrt{64}} = \sqrt[3]{64 \cdot 8} = \sqrt[3]{512} = 8 = \sqrt{64} = | + | Let x = 64. Using substitution, <math>\sqrt[3]{64\sqrt{64}} = \sqrt[3]{64 \cdot 8} = \sqrt[3]{512} = 8 = \sqrt{64} = 64^\frac{1}{2} = x^\frac{1}{2}</math>, so the answer is <math> \boxed{\textbf{(D)}\ x^\frac{1}{2}}</math> |
~idk12345678 | ~idk12345678 |
Latest revision as of 11:54, 12 June 2024
Contents
Problem
Assume that is a positive real number. Which is equivalent to ?
Solution 1
Solution 2
Let x = 64. Using substitution, , so the answer is
~idk12345678
See also
2008 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.