Difference between revisions of "PaperMath’s sum"
(→See also) |
m (Formatting) |
||
(15 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | == | + | == Statement == |
− | + | '''Papermath’s sum''' states, | |
− | <math>\sum_{i=0}^{2n} {( | + | <math>\sum_{i=0}^{2n-1} {(10^ix^2)}=(\sum_{j=0}^{n-1}{(10^j3x)})^2 + \sum_{k=0}^{n-1} {(10^k2x^2)}</math> |
Or | Or | ||
− | <math>x^2\sum_{i=0}^{2n} {10^i}=( | + | <math>x^2\sum_{i=0}^{2n-1} {10^i}=(3x \sum_{j=0}^{n-1} {(10^j)})^2 + 2x^2\sum_{k=0}^{n-1} {(10^k)}</math> |
For all real values of <math>x</math>, this equation holds true for all nonnegative values of <math>n</math>. When <math>x=1</math>, this reduces to | For all real values of <math>x</math>, this equation holds true for all nonnegative values of <math>n</math>. When <math>x=1</math>, this reduces to | ||
− | <math>\sum_{i=0}^{2n} {10^i}=(\sum_{j=0}^n {(3 \times 10^j)})^2 + \sum_{k=0}^n {(2 \times 10^k)}</math> | + | <math>\sum_{i=0}^{2n-1} {10^i}=(\sum_{j=0}^{n -1}{(3 \times 10^j)})^2 + \sum_{k=0}^{n-1} {(2 \times 10^k)}</math> |
− | ==Proof== | + | == Proof == |
− | |||
− | <math> | + | First, note that the <math>x^2</math> part is trivial multiplication, associativity, commutativity, and distributivity over addition, |
− | + | Observing that | |
+ | <math>\sum_{i=0}^{n-1} {10^i} = \frac{10^{n}-1}{9}</math> and <math>(10^{2n}-1)/9 = 9((10^{n}-1)/9)^2 + 2(10^n -1)/9</math> concludes the proof. | ||
− | + | == Problems == | |
− | + | For a positive integer <math>n</math> and nonzero digits <math>a</math>, <math>b</math>, and <math>c</math>, let <math>A_n</math> be the <math>n</math>-digit integer each of whose digits is equal to <math>a</math>; let <math>B_n</math> be the <math>n</math>-digit integer each of whose digits is equal to <math>b</math>, and let <math>C_n</math> be the <math>2n</math>-digit (not <math>n</math>-digit) integer each of whose digits is equal to <math>c</math>. What is the greatest possible value of <math>a + b + c</math> for which there are at least two values of <math>n</math> such that <math>C_n - B_n = A_n^2</math>? | |
− | + | <math>\textbf{(A) } 12 \qquad \textbf{(B) } 14 \qquad \textbf{(C) } 16 \qquad \textbf{(D) } 18 \qquad \textbf{(E) } 20</math> | |
− | + | ([[AMC 12A Problem 25|Source]]) | |
− | + | == Notes == | |
− | + | Papermath’s sum was named by the aops user Papermath. | |
− | + | ==See also== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
*[[Cyclic sum]] | *[[Cyclic sum]] | ||
*[[Summation]] | *[[Summation]] | ||
Line 74: | Line 39: | ||
[[Category:Algebra]] | [[Category:Algebra]] | ||
[[Category:Theorems]] | [[Category:Theorems]] | ||
+ | {{Stub}} |
Latest revision as of 14:15, 2 February 2025
Contents
Statement
Papermath’s sum states,
Or
For all real values of , this equation holds true for all nonnegative values of
. When
, this reduces to
Proof
First, note that the part is trivial multiplication, associativity, commutativity, and distributivity over addition,
Observing that
and
concludes the proof.
Problems
For a positive integer and nonzero digits
,
, and
, let
be the
-digit integer each of whose digits is equal to
; let
be the
-digit integer each of whose digits is equal to
, and let
be the
-digit (not
-digit) integer each of whose digits is equal to
. What is the greatest possible value of
for which there are at least two values of
such that
?
(Source)
Notes
Papermath’s sum was named by the aops user Papermath.
See also
This article is a stub. Help us out by expanding it.