Difference between revisions of "2001 IMO Problems/Problem 5"
m |
(→Solution 2) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 41: | Line 41: | ||
==Solution 2== | ==Solution 2== | ||
− | Refer to the image in Solution 1 | + | Refer to the image in Solution 1 without any construction |
− | |||
\begin{align*} | \begin{align*} | ||
− | \text{Set: } & \angle | + | \text{Set: } & \angle ABY = \angle YBC = x, \quad \angle YCB = 120^\circ - 2x. \\ |
− | \text{Observe: } & \angle | + | \text{Observe: } & \angle AYB = 120^\circ - x, \quad \angle AXB = 150^\circ - 2x. \\ |
\text{Using the Law of Sines, we get: } & \\ | \text{Using the Law of Sines, we get: } & \\ | ||
− | & | + | & AY = AB \cdot \frac{\sin x^\circ}{\sin(120^\circ - x)}, \\ |
− | & | + | & BX = AB \cdot \frac{\sin 30^\circ}{\sin(150^\circ - 2x)}, \\ |
− | & | + | & YB = AB \cdot \frac{\sin 60^\circ}{\sin(120^\circ - x)}. \\ |
− | \text{So, the relation } AB + | + | \text{So, the relation } AB + BX &= AY + AB \text{ is the same as saying} \\ |
& 1 + \frac{\sin 30^\circ}{\sin(150^\circ - 2x)} = \frac{\sin x + \sin 60^\circ}{\sin(120^\circ - x)}. \\ | & 1 + \frac{\sin 30^\circ}{\sin(150^\circ - 2x)} = \frac{\sin x + \sin 60^\circ}{\sin(120^\circ - x)}. \\ | ||
\text{We have } & \sin x + \sin 60^\circ = 2 \sin\left(\frac{1}{2}(x + 60^\circ)\right) \cos\left(\frac{1}{2}(x - 60^\circ)\right). \\ | \text{We have } & \sin x + \sin 60^\circ = 2 \sin\left(\frac{1}{2}(x + 60^\circ)\right) \cos\left(\frac{1}{2}(x - 60^\circ)\right). \\ |
Latest revision as of 14:01, 15 May 2024
Contents
Problem
is a triangle. lies on and bisects angle . lies on and bisects angle . Angle is . . Find all possible values for angle .
Solution1
Let be on extension of and . Let be on and , then Since , is equilateral. Let , then, We claim that must be on , i.e., . If is not on , then , which leads to , and is equilateral, which is not possible. With that, we have, in , , , and .
Solution by .
Solution 2
Refer to the image in Solution 1 without any construction \begin{align*} \text{Set: } & \angle ABY = \angle YBC = x, \quad \angle YCB = 120^\circ - 2x. \\ \text{Observe: } & \angle AYB = 120^\circ - x, \quad \angle AXB = 150^\circ - 2x. \\ \text{Using the Law of Sines, we get: } & \\ & AY = AB \cdot \frac{\sin x^\circ}{\sin(120^\circ - x)}, \\ & BX = AB \cdot \frac{\sin 30^\circ}{\sin(150^\circ - 2x)}, \\ & YB = AB \cdot \frac{\sin 60^\circ}{\sin(120^\circ - x)}. \\ \text{So, the relation } AB + BX &= AY + AB \text{ is the same as saying} \\ & 1 + \frac{\sin 30^\circ}{\sin(150^\circ - 2x)} = \frac{\sin x + \sin 60^\circ}{\sin(120^\circ - x)}. \\ \text{We have } & \sin x + \sin 60^\circ = 2 \sin\left(\frac{1}{2}(x + 60^\circ)\right) \cos\left(\frac{1}{2}(x - 60^\circ)\right). \\ \text{Also, } & \sin(120^\circ - x) = \sin(x + 60^\circ) \quad \text{and} \\ & \sin(x + 60^\circ) = 2 \sin\left(\frac{1}{2}(x + 60^\circ)\right) \cos\left(\frac{1}{2}(x + 60^\circ)\right). \\ \text{So, } & \frac{\sin x + \sin 60^\circ}{\sin(120^\circ - x)} = \frac{\cos\left(\frac{1}{2}x - 30^\circ\right)}{\cos\left(\frac{1}{2}x + 30^\circ\right)}. \\ \text{Let } & \frac{1}{2}x = t. \\ \text{Then } & \frac{\cos(t - 30^\circ)}{\cos(t + 30^\circ)} - 1 = \frac{\cos(t - 30^\circ) - \cos(t + 30^\circ)}{\cos(t + 30^\circ)} = \frac{2 \sin(30^\circ) \sin(t)}{\cos(t + 30^\circ)}. \\ \text{Hence, the problem is just} & \frac{\sin(30^\circ)}{\sin(150^\circ - 4t)} = \frac{\sin(t)}{\cos(t + 30^\circ)} \\ \Rightarrow & \cos(t + 30^\circ) = 2 \sin(t) \sin(150^\circ - 4t) \\ & = \cos(5t - 150^\circ) - \cos(150^\circ - 3t). \\ \text{Now, } & \cos(t + 30^\circ) + \cos(5t + 30^\circ) = \cos(3t + 30^\circ). \\ \text{Because } & \cos(A + B) + \cos(A - B) = 2\cos A \cos B, \\ \text{we get } & \cos(t + 30^\circ) + \cos(5t + 30^\circ) = 2 \cos(3t + 30^\circ) \cos(2t). \\ \Rightarrow & (2 \cos(2t) - 1)(\cos(3t + 30^\circ)) = 0. \\ \text{This gives } & t \text{ to be } 20^\circ \text{ or } 30^\circ. \\ \text{Recall that } & t = \frac{1}{2}x = \frac{1}{4}\angle ABC. \\ \text{Here we can see } & \angle ABC \neq 120^\circ \text{ because of the angle sum property.} \\ \therefore & \angle B = 80^\circ, \angle A = 60^\circ, \text{ and } \angle C = 40^\circ. \end{align*}
~Lakshya Pamecha
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
See also
2001 IMO (Problems) • Resources | ||
Preceded by Problem 4 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 6 |
All IMO Problems and Solutions |