Difference between revisions of "2024 AMC 8 Problems/Problem 1"

(Solution 5)
(Undo revision 242866 by Aw13255 (talk) Undo Spam)
(Tag: Undo)
 
(97 intermediate revisions by 42 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
What is the ones digit of<cmath>222,222-22,222-2,222-222-22-2?</cmath><math>\textbf{(A) } 0\qquad\textbf{(B) } 2\qquad\textbf{(C) } 4\qquad\textbf{(D) } 6\qquad\textbf{(E) } 8</math>
+
What is the last digit of: <cmath>222{,}222-22{,}222-2{,}222-222-22-2?</cmath>
 +
<math>\textbf{(A) } 0\qquad\textbf{(B) } 2\qquad\textbf{(C) } 4\qquad\textbf{(D) } 8\qquad\textbf{(E) } 10</math>
  
 
==Solution 1==
 
==Solution 1==
 +
We can rewrite the expression as <math>222,222-(22,222+2,222+222+22+2)</math>. We note that the units digit of <math>22,222+2,222+222+22+2</math> is <math>0</math> because all the units digits of the five numbers are <math>2</math> and <math>5\cdot2=10</math>, which has a units digit of <math>0</math>. Now, we have something with a units digit of <math>0</math> subtracted from <math>222,222</math>, and so the units digit of this expression is <math>\boxed{\textbf{(B) } 2}</math>.
  
We can rewrite the expression as <cmath>222,222-(22,222+2,222+222+22+2).</cmath>
+
==Solution 2==
 
+
<cmath>222,222-22,222 = 200,000</cmath>
We note that the units digit of the addition is <math>0</math> because all the units digits of the five numbers are <math>2</math> and <math>5*2=10</math>, which has a units digit of <math>0</math>.
+
<cmath>200,000 - 2,222 = 197778</cmath>
 
+
<cmath>197778 - 222 = 197556</cmath>
Now, we have something with a units digit of <math>0</math> subtracted from <math>222,222</math>. The units digit of this expression is obviously <math>2</math>, and we get <math>\boxed{B}</math> as our answer.
+
<cmath>197556 - 22 = 197534</cmath>
 
+
<cmath>197534 - 2 = 197532</cmath>
i am smart
+
So our answer is <math>\boxed{\textbf{(B) } 2}</math>.
 
 
~ Dreamer1297
 
 
 
==Solution 2(Tedious)==
 
 
 
Using the oniichan Thereom, we deduce that the answer is (B)
 
  
 
==Solution 3==
 
==Solution 3==
 
+
We only care about the units digits. Thus, <math>2-2</math> ends in <math>0</math>, <math>0-2</math> after regrouping(10-2) ends in <math>8</math>, <math>8-2</math> ends in <math>6</math>, <math>6-2</math> ends in <math>4</math>, and <math>4-2</math> ends in <math>\boxed{\textbf{(B) } 2}</math>.
We only care about the unit's digits.
 
 
 
Thus, <math>2-2</math> ends in <math>0</math>, <math>0-2</math> ends in <math>8</math>, <math>8-2</math> ends in <math>6</math>, <math>6-2</math> ends in <math>4</math>, and <math>4-2</math> ends in <math>\boxed{\textbf{(B) } 2}</math>.
 
 
 
~iasdjfpawregh
 
~vockey
 
  
 
==Solution 4==
 
==Solution 4==
 +
We just take the units digit of each and subtract, adding an extra ten to the first number so we don't get a negative number:
 +
<cmath>(12-2)-(2+2+2+2)=10-8=\boxed{\textbf{(B) } 2}</cmath>
  
Let <math>S</math> be equal to the expression at hand. We reduce each term modulo <math>10</math> to find the units digit of each term in the expression, and thus the units digit of the entire thing:
+
== Solution 5 ==
 +
<cmath>222{,}222-22{,}222-2{,}222-222-22-2\equiv2-2-2-2-2\equiv-8\equiv\boxed{\textbf{(B) } 2}\pmod{10}</cmath>
  
<cmath>S\equiv 2 - 2 - 2 - 2- 2- 2 \equiv -8 \equiv -8 + 10\equiv \boxed{\textbf{(B) } 2} \pmod{10}.</cmath>
 
  
-Benedict T (countmath1)
+
== Solution 6==
  
 +
We can ignore the other digits and just do <math>22-2-2-2-2-2</math>. Because you are subtracting five <math>2s</math> and <math>2\cdot5 = 10</math>, you subtract <math>10</math> from <math>22</math>. This gives us 12, so the last digit is <math>\boxed{\textbf{(B) } 2}</math>.
  
 +
== Video Solution 1 (Detailed Explanation) 🚀⚡📊 ==
 +
Youtube Link ⬇️
  
==Solution 5==
+
https://youtu.be/jqsbMWhTYRg
We just take the units digit of each and subtract, or you can do it this way by adding an extra ten to the first number (so we don't get a negative number):
 
<cmath>12-2-(2+2+2+2)=10-8=2</cmath>
 
Thus, we get the answer <math>\boxed{(B)}</math>
 
  
- FU-King
+
~ ChillGuyDoesMath :)
  
==Solution 6(fast)==
+
== Video by MathTalks_Now ==
uwu  <math>\boxed{(uwu)}</math>
 
  
- uwu gamer girl(ꈍᴗꈍ)
+
https://www.youtube.com/watch?v=crn37TRMLv4
  
This is not useful. Please come up with a proper solution or delete.
+
-rc1219
  
Hello, please remove this nonsense post, or your account will be in risk of banning.
+
==Video Solution by Central Valley Math Circle (Goes through full thought process)==
 +
https://youtu.be/-XcShDyuZIo
  
I DONT CARE NOBODY ASKED(ꈍᴗꈍ)
+
==Video Solution 2 (MATH-X)==
 +
https://youtu.be/BaE00H2SHQM?si=O0O0g7qq9AbhQN9I&t=130
  
==Solution 7==
+
==Video Solution 3 (A Clever Explanation You’ll Get Instantly)==
2-2=0. Therefore, ones digit is the 10th avacado  <math>\boxed{(F)}</math>
+
https://youtu.be/5ZIFnqymdDQ?si=IbHepN2ytt7N23pl&t=53
  
- iamcalifornia'sresidentidiot
+
==Video Solution  4 (Quick and Easy)==
 +
https://youtu.be/Ol1seWX0xHY
  
Hello, please remove this nonsense post, or your account will be in risk of banning
+
==Video Solution 5 Interstigation==
 
+
https://youtu.be/ktzijuZtDas&t=36
this is not nonsense like what are you yapping about this is the most beautiful solution every to be conceived in all of humanity i literally deserve a nobel prize
 
 
 
PS touch grass
 
 
 
==Video Solution 1 (easy to digest) by Power Solve==
 
https://www.youtube.com/watch?v=dQw4w9WgXcQ
 
 
 
==Video Solution (easy to understand)==
 
https://youtu.be/BaE00H2SHQM?si=_8lhp8-dzNxZ-eUQ
 
 
 
~Math-X
 
 
 
==Video Solution by NiuniuMaths (Easy to understand!)==
 
https://www.youtube.com/watch?v=dQw4w9WgXcQ
 
  
~Rick Aopsly
+
==Video Solution 6 Daily Dose of Math==
 +
https://youtu.be/bSPWqeNO11M?si=HIzlxPjMfvGM5lxR
  
==Video Solution 2 by uwu==
+
==Video Solution 7 Dr. David==
https://www.youtube.com/watch?v=dQw4w9WgXcQ
+
https://youtu.be/RzPadkHd3Yc
  
== Video Solution by CosineMethod [🔥Fast and Easy🔥]==
+
==Video Solution 8 WhyMath==
 
+
https://youtu.be/i4mcj3jRTxM
https://www.youtube.com/watch?v=dQw4w9WgXcQ
 
 
 
== cool solution must see ==
 
 
 
https://www.youtube.com/watch?v=dQw4w9WgXcQ
 
==Video Solution by Interstigation==
 
https://youtu.be/ktzijuZtDas&t=36
 
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2024|before=First Problem|num-a=2}}
 
{{AMC8 box|year=2024|before=First Problem|num-a=2}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 08:46, 16 February 2025

Problem

What is the last digit of: \[222{,}222-22{,}222-2{,}222-222-22-2?\] $\textbf{(A) } 0\qquad\textbf{(B) } 2\qquad\textbf{(C) } 4\qquad\textbf{(D) } 8\qquad\textbf{(E) } 10$

Solution 1

We can rewrite the expression as $222,222-(22,222+2,222+222+22+2)$. We note that the units digit of $22,222+2,222+222+22+2$ is $0$ because all the units digits of the five numbers are $2$ and $5\cdot2=10$, which has a units digit of $0$. Now, we have something with a units digit of $0$ subtracted from $222,222$, and so the units digit of this expression is $\boxed{\textbf{(B) } 2}$.

Solution 2

\[222,222-22,222 = 200,000\] \[200,000 - 2,222 = 197778\] \[197778 - 222 = 197556\] \[197556 - 22 = 197534\] \[197534 - 2 = 197532\] So our answer is $\boxed{\textbf{(B) } 2}$.

Solution 3

We only care about the units digits. Thus, $2-2$ ends in $0$, $0-2$ after regrouping(10-2) ends in $8$, $8-2$ ends in $6$, $6-2$ ends in $4$, and $4-2$ ends in $\boxed{\textbf{(B) } 2}$.

Solution 4

We just take the units digit of each and subtract, adding an extra ten to the first number so we don't get a negative number: \[(12-2)-(2+2+2+2)=10-8=\boxed{\textbf{(B) } 2}\]

Solution 5

\[222{,}222-22{,}222-2{,}222-222-22-2\equiv2-2-2-2-2\equiv-8\equiv\boxed{\textbf{(B) } 2}\pmod{10}\]


Solution 6

We can ignore the other digits and just do $22-2-2-2-2-2$. Because you are subtracting five $2s$ and $2\cdot5 = 10$, you subtract $10$ from $22$. This gives us 12, so the last digit is $\boxed{\textbf{(B) } 2}$.

Video Solution 1 (Detailed Explanation) 🚀⚡📊

Youtube Link ⬇️

https://youtu.be/jqsbMWhTYRg

~ ChillGuyDoesMath :)

Video by MathTalks_Now

https://www.youtube.com/watch?v=crn37TRMLv4

-rc1219

Video Solution by Central Valley Math Circle (Goes through full thought process)

https://youtu.be/-XcShDyuZIo

Video Solution 2 (MATH-X)

https://youtu.be/BaE00H2SHQM?si=O0O0g7qq9AbhQN9I&t=130

Video Solution 3 (A Clever Explanation You’ll Get Instantly)

https://youtu.be/5ZIFnqymdDQ?si=IbHepN2ytt7N23pl&t=53

Video Solution 4 (Quick and Easy)

https://youtu.be/Ol1seWX0xHY

Video Solution 5 Interstigation

https://youtu.be/ktzijuZtDas&t=36

Video Solution 6 Daily Dose of Math

https://youtu.be/bSPWqeNO11M?si=HIzlxPjMfvGM5lxR

Video Solution 7 Dr. David

https://youtu.be/RzPadkHd3Yc

Video Solution 8 WhyMath

https://youtu.be/i4mcj3jRTxM

See Also

2024 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png