Difference between revisions of "1977 AHSME Problems/Problem 21"

(Solution)
(See Also)
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
== Problem 21 ==
+
== Problem==
  
 
For how many values of the coefficient a do the equations <cmath>\begin{align*}x^2+ax+1=0 \\ x^2-x-a=0\end{align*}</cmath> have a common real solution?
 
For how many values of the coefficient a do the equations <cmath>\begin{align*}x^2+ax+1=0 \\ x^2-x-a=0\end{align*}</cmath> have a common real solution?
Line 11: Line 11:
 
==Solution==
 
==Solution==
  
Subtracting the equations, we get <math>ax+x+1+a=0</math>, or <math>(x+1)(a+1)=0</math>, so <math>x=-1</math> or <math>a=-1</math>. If <math>x=-1</math>, then <math>a=2</math>, which satisfies the condition. If <math>a=-1</math>, then <math>x</math> is nonreal. This means that <math>a=-1</math> is the only number that works, so our answer is <math>(B) 1</math>.
+
Subtracting the equations, we get <math>ax+x+1+a=0</math>, or <math>(x+1)(a+1)=0</math>, so <math>x=-1</math> or <math>a=-1</math>. If <math>x=-1</math>, then <math>a=2</math>, which satisfies the condition. If <math>a=-1</math>, then <math>x</math> is nonreal. This means that <math>a=-1</math> is the only number that works, so our answer is <math>(B)</math>.
 +
 
 +
~alexanderruan
 +
 
 +
== See Also ==
 +
{{AHSME box|year=1977|num-b=20|num-a=22}}

Latest revision as of 16:57, 17 December 2024

Problem

For how many values of the coefficient a do the equations \begin{align*}x^2+ax+1=0 \\ x^2-x-a=0\end{align*} have a common real solution?

$\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ \infty$

Solution

Subtracting the equations, we get $ax+x+1+a=0$, or $(x+1)(a+1)=0$, so $x=-1$ or $a=-1$. If $x=-1$, then $a=2$, which satisfies the condition. If $a=-1$, then $x$ is nonreal. This means that $a=-1$ is the only number that works, so our answer is $(B)$.

~alexanderruan

See Also

1977 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions