Difference between revisions of "2010 AMC 8 Problems/Problem 25"

m (Problem)
(Solution 2)
 
(7 intermediate revisions by 3 users not shown)
Line 5: Line 5:
  
 
==Solution 1==
 
==Solution 1==
A valid climb is a sequence of some or all of the <math>1</math>, <math>2</math>, and <math>3</math> step hops, in which the sum of the sequence adds to <math>6</math>.
 
 
There are three possible sequences which only contain one number- all the <math>1s</math>, all <math>2s</math>, or all <math>3s</math>.
 
 
If we attempt to create sequences which contain one <math>2</math> and the rest <math>1s</math>, the sequence will contain one <math>2</math> and four <math>1s</math>. We can place the <math>2</math> in either the first, second, third, fourth, or fifth position, giving a total of five possibilities.
 
 
If we attempt to create sequences which contain one <math>3</math> and the rest <math>1s</math>, the sequence will contain one <math>3</math> and three <math>1s</math>. We can place the <math>3</math> in either the first, second, third, or fourth position, giving a total of four possibilities.
 
 
For sequences which contain exactly two <math>2s</math> and the rest <math>1s</math>, the sequence will contain two <math>2s</math> and two <math>1s</math>. The two <math>2s</math> could be next to each other, separated by one <math>1</math> in between, or separated by two <math>1s</math> in between. We can place the two <math>2s</math> next to each other in three ways, separated by one <math>1</math> in two ways, and separated by two <math>1s</math> in only one way. This gives us a total of six ways to create a sequence which contains two <math>2s</math> and two <math>1s</math>.
 
 
Note that we cannot have a sequence of only <math>2s</math> and <math>3s</math> since the sum will either be <math>5</math> or greater than <math>6</math>.
 
 
We now only need to consider the case where we use all three numbers in the sequence. Since all three numbers add to <math>6</math>, the number of permutations of the three numbers is <math>3!=6</math>.
 
 
Adding up the number of sequences above, we get: <math>3+5+4+6+6=24</math>. Thus, answer choice <math>\boxed{\textbf{(E)}\ 24}</math> is correct.
 
 
*Note that this strategy is impractical (and error-prone) for larger numbers.
 
 
==Solution 2==
 
 
A dynamics programming approach is quick and easy. The number of ways to climb one stair is <math>1</math>. There are <math>2</math> ways to climb two stairs: <math>1</math>,<math>1</math> or <math>2</math>. For 3 stairs, there are <math>4</math> ways:  
 
A dynamics programming approach is quick and easy. The number of ways to climb one stair is <math>1</math>. There are <math>2</math> ways to climb two stairs: <math>1</math>,<math>1</math> or <math>2</math>. For 3 stairs, there are <math>4</math> ways:  
 
(<math>1</math>,<math>1</math>,<math>1</math>)
 
(<math>1</math>,<math>1</math>,<math>1</math>)
Line 36: Line 17:
  
 
Thus, there are <math>\boxed{\textbf{(E) } 24}</math> ways to get to step <math>6.</math>
 
Thus, there are <math>\boxed{\textbf{(E) } 24}</math> ways to get to step <math>6.</math>
 
==Solution 3==
 
Complementary counting is also possible. Considering the six steps, Jo has to land on the last step, so there are <math>2^5=32</math> subsets (hit steps) of the other five steps. After that, subtract the number of ways to climb the steps while taking a leap of <math>4</math>, <math>5</math>, or <math>6</math>. The eight possible ways for this is (<math>4</math>, <math>1</math>, <math>1</math>), (<math>4</math>, <math>2</math>), (<math>1</math>, <math>4</math>, <math>1</math>), (<math>1</math>, <math>1</math>, <math>4</math>), (<math>2</math>, <math>4</math>), (<math>1</math>, <math>5</math>), (<math>5</math>, <math>1</math>), and (<math>6</math>)
 
 
Altogether this makes for <math>32-8= \boxed{\textbf{(E) 24}}</math> valid ways for Jo to get to step 6.
 
  
 
== Video Solution by OmegaLearn ==
 
== Video Solution by OmegaLearn ==

Latest revision as of 10:12, 15 July 2024

Problem

Everyday at school, Jo climbs a flight of $6$ stairs. Jo can take the stairs $1$, $2$, or $3$ at a time. For example, Jo could climb $3$, then $1$, then $2$. In how many ways can Jo climb the stairs?

$\textbf{(A)}\ 13 \qquad\textbf{(B)}\ 18\qquad\textbf{(C)}\ 20\qquad\textbf{(D)}\ 22\qquad\textbf{(E)}\ 24$

Solution 1

A dynamics programming approach is quick and easy. The number of ways to climb one stair is $1$. There are $2$ ways to climb two stairs: $1$,$1$ or $2$. For 3 stairs, there are $4$ ways: ($1$,$1$,$1$) ($1$,$2$) ($2$,$1$) ($3$)

For four stairs, consider what step they came from to land on the fourth stair. They could have hopped straight from the 1st, done a double from #2, or used a single step from #3. The ways to get to each of these steps are $1+2+4=7$ ways to get to step 4. The pattern can then be extended: $4$ steps: $1+2+4=7$ ways. $5$ steps: $2+4+7=13$ ways. $6$ steps: $4+7+13=24$ ways.

Thus, there are $\boxed{\textbf{(E) } 24}$ ways to get to step $6.$

Video Solution by OmegaLearn

https://youtu.be/5UojVH4Cqqs?t=4560

~ pi_is_3.14

Video by MathTalks

https://youtu.be/mSCQzmfdX-g



See Also

2010 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png