Difference between revisions of "2002 AMC 12P Problems"

(Problem 2)
(Problem 22)
 
(17 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
{{AMC12 Problems|year=2002|ab=P}}
 
{{AMC12 Problems|year=2002|ab=P}}
 
== Problem 1 ==
 
== Problem 1 ==
 +
 
Which of the following numbers is a perfect square?
 
Which of the following numbers is a perfect square?
  
Line 18: Line 19:
  
 
== Problem 2 ==
 
== Problem 2 ==
 +
 
The function <math>f</math> is given by the table
 
The function <math>f</math> is given by the table
  
<math>
+
<cmath>
\begin{tabular}{|c|c|c|c|c|c|}
+
\begin{tabular}{|c||c|c|c|c|c|}
 
  \hline  
 
  \hline  
 
  x & 1 & 2 & 3 & 4 & 5 \\  
 
  x & 1 & 2 & 3 & 4 & 5 \\  
Line 28: Line 30:
 
  \hline
 
  \hline
 
\end{tabular}
 
\end{tabular}
</math>
+
</cmath>
  
 
If <math>u_0=4</math> and <math>u_{n+1} = f(u_n)</math> for <math>n \ge 0</math>, find <math>u_{2002}</math>
 
If <math>u_0=4</math> and <math>u_{n+1} = f(u_n)</math> for <math>n \ge 0</math>, find <math>u_{2002}</math>
Line 47: Line 49:
  
 
== Problem 3 ==
 
== Problem 3 ==
 +
 
The dimensions of a rectangular box in inches are all positive integers and the volume of the box is <math>2002</math> in<math>^3</math>. Find the minimum possible sum of the three dimensions.
 
The dimensions of a rectangular box in inches are all positive integers and the volume of the box is <math>2002</math> in<math>^3</math>. Find the minimum possible sum of the three dimensions.
  
Line 64: Line 67:
  
 
== Problem 4 ==
 
== Problem 4 ==
 +
 
Let <math>a</math> and <math>b</math> be distinct real numbers for which
 
Let <math>a</math> and <math>b</math> be distinct real numbers for which
 
<cmath>\frac{a}{b} + \frac{a+10b}{b+10a} = 2.</cmath>
 
<cmath>\frac{a}{b} + \frac{a+10b}{b+10a} = 2.</cmath>
Line 84: Line 88:
  
 
== Problem 5 ==
 
== Problem 5 ==
 +
 
For how many positive integers <math>m</math> is  
 
For how many positive integers <math>m</math> is  
 
<cmath>\frac{2002}{m^2 -2}</cmath>
 
<cmath>\frac{2002}{m^2 -2}</cmath>
 +
 +
a positive integer?
  
 
<math>
 
<math>
Line 102: Line 109:
  
 
== Problem 6 ==
 
== Problem 6 ==
 +
 
Participation in the local soccer league this year is <math>10\%</math> higher than last year. The number of males increased by <math>5\%</math> and the number of females increased by <math>20\%</math>. What fraction of the soccer league is now female?
 
Participation in the local soccer league this year is <math>10\%</math> higher than last year. The number of males increased by <math>5\%</math> and the number of females increased by <math>20\%</math>. What fraction of the soccer league is now female?
  
Line 175: Line 183:
  
 
Let <math>f_n (x) = \text{sin}^n x + \text{cos}^n x.</math> For how many <math>x</math> in <math>[0,\pi]</math> is it true that
 
Let <math>f_n (x) = \text{sin}^n x + \text{cos}^n x.</math> For how many <math>x</math> in <math>[0,\pi]</math> is it true that
 +
 +
<cmath>6f_{4}(x)-4f_{6}(x)=2f_{2}(x)?</cmath>
  
 
<math>
 
<math>
Line 194: Line 204:
 
Let <math>t_n = \frac{n(n+1)}{2}</math> be the <math>n</math>th triangular number. Find
 
Let <math>t_n = \frac{n(n+1)}{2}</math> be the <math>n</math>th triangular number. Find
  
<cmath>\frac{1}{t_1} + \frac{1}{t_2} + \frac{1}{t_3} + ... + \frac{1}{t_2002}</cmath>
+
<cmath>\frac{1}{t_1} + \frac{1}{t_2} + \frac{1}{t_3} + ... + \frac{1}{t_{2002}}</cmath>
  
 
<math>
 
<math>
Line 267: Line 277:
  
 
== Problem 15 ==
 
== Problem 15 ==
 +
 
There are <math>1001</math> red marbles and <math>1001</math> black marbles in a box. Let <math>P_s</math> be the probability that two marbles drawn at random from the box are the same color, and let <math>P_d</math> be the probability that they are different colors. Find <math>|P_s-P_d|.</math>
 
There are <math>1001</math> red marbles and <math>1001</math> black marbles in a box. Let <math>P_s</math> be the probability that two marbles drawn at random from the box are the same color, and let <math>P_d</math> be the probability that they are different colors. Find <math>|P_s-P_d|.</math>
  
Line 401: Line 412:
 
== Problem 22 ==
 
== Problem 22 ==
  
Under the new AMC <math>10, 12</math> scoring method, <math>6</math> points are given for each correct answer, <math>2.5</math> points are given for each unanswered question, and no points are given for an incorrect answer. Some of the possible scores between <math>0</math> and <math>150</math> can be obtained in only one way, for example, a score of <math>104.5</math> can be obtained with <math>17</math> correct answers, <math>1</math> unanswered question, and <math>7</math> incorrect answers, and also with <math>12</math> correct answers and <math>13</math> unanswered questions. There are scores that can be obtained in exactly three ways. What is their sum?
+
Under the new AMC <math>10, 12</math> scoring method, <math>6</math> points are given for each correct answer, <math>2.5</math> points are given for each unanswered question, and no points are given for an incorrect answer. Some of the possible scores between <math>0</math> and <math>150</math> can be obtained in only one way, for example, the only way to obtain a score of <math>146.5</math> is to have <math>24</math> correct answers and one unanswered question. Some scores can be obtained in exactly two ways, for example, a score of <math>104.5</math> can be obtained with <math>17</math> correct answers, <math>1</math> unanswered question, and <math>7</math> incorrect, and also with <math>12</math> correct answers and <math>13</math> unanswered questions. There are (three) scores that can be obtained in exactly three ways. What is their sum?
  
 
<math>
 
<math>
Line 473: Line 484:
 
== See also ==
 
== See also ==
  
{{AMC12 box|year=2001|before=[[2000 AMC 12 Problems]]|after=[[2002 AMC 12A Problems]]}}
+
{{AMC12 box|year=2002|ab=P|before=[[2001 AMC 12 Problems]]|after=[[2002 AMC 12A Problems]]}}
  
 
* [[AMC 12]]
 
* [[AMC 12]]
 
* [[AMC 12 Problems and Solutions]]
 
* [[AMC 12 Problems and Solutions]]
* [[2002 AMC 12]]
+
* [[2002 AMC 12P]]
 
* [[Mathematics competition resources]]
 
* [[Mathematics competition resources]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 03:03, 14 July 2024

2002 AMC 12P (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the test if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

Which of the following numbers is a perfect square?

$\text{(A) }4^4 5^5 6^6 \qquad \text{(B) }4^4 5^6 6^5 \qquad \text{(C) }4^5 5^4 6^6 \qquad \text{(D) }4^6 5^4 6^5 \qquad \text{(E) }4^6 5^5 6^4$

Solution

Problem 2

The function $f$ is given by the table

\[\begin{tabular}{|c||c|c|c|c|c|}  \hline   x & 1 & 2 & 3 & 4 & 5 \\   \hline  f(x) & 4 & 1 & 3 & 5 & 2 \\  \hline \end{tabular}\]

If $u_0=4$ and $u_{n+1} = f(u_n)$ for $n \ge 0$, find $u_{2002}$

$\text{(A) }1 \qquad \text{(B) }2 \qquad \text{(C) }3 \qquad \text{(D) }4 \qquad \text{(E) }5$

Solution

Problem 3

The dimensions of a rectangular box in inches are all positive integers and the volume of the box is $2002$ in$^3$. Find the minimum possible sum of the three dimensions.

$\text{(A) }36 \qquad \text{(B) }38  \qquad \text{(C) }42 \qquad \text{(D) }44 \qquad \text{(E) }92$

Solution

Problem 4

Let $a$ and $b$ be distinct real numbers for which \[\frac{a}{b} + \frac{a+10b}{b+10a} = 2.\]

Find $\frac{a}{b}$

$\text{(A) }0.4 \qquad \text{(B) }0.5  \qquad \text{(C) }0.6 \qquad \text{(D) }0.7 \qquad \text{(E) }0.8$

Solution

Problem 5

For how many positive integers $m$ is \[\frac{2002}{m^2 -2}\]

a positive integer?

$\text{(A) one} \qquad \text{(B) two} \qquad \text{(C) three} \qquad \text{(D) four} \qquad \text{(E) more than four}$

Solution

Problem 6

Participation in the local soccer league this year is $10\%$ higher than last year. The number of males increased by $5\%$ and the number of females increased by $20\%$. What fraction of the soccer league is now female?

$\text{(A) }\frac{1}{3} \qquad \text{(B) }\frac{4}{11} \qquad \text{(C) }\frac{2}{5} \qquad \text{(D) }\frac{4}{9} \qquad \text{(E) }\frac{1}{2}$

Solution

Problem 7

How many three-digit numbers have at least one $2$ and at least one $3$?

$\text{(A) }52 \qquad \text{(B) }54  \qquad \text{(C) }56 \qquad \text{(D) }58 \qquad \text{(E) }60$

Solution

Problem 8

Let $AB$ be a segment of length $26$, and let points $C$ and $D$ be located on $AB$ such that $AC=1$ and $AD=8$. Let $E$ and $F$ be points on one of the semicircles with diameter $AB$ for which $EC$ and $FD$ are perpendicular to $AB$. Find $EF.$

$\text{(A) }5 \qquad \text{(B) }5 \sqrt{2}  \qquad \text{(C) }7 \qquad \text{(D) }7 \sqrt{2} \qquad \text{(E) }12$

Solution

Problem 9

Two walls and the ceiling of a room meet at right angles at point $P.$ A fly is in the air one meter from one wall, eight meters from the other wall, and nine meters from point $P$. How many meters is the fly from the ceiling?

$\text{(A) }\sqrt{13} \qquad \text{(B) }\sqrt{14} \qquad \text{(C) }\sqrt{15} \qquad \text{(D) }4 \qquad \text{(E) }\sqrt{17}$

Solution

Problem 10

Let $f_n (x) = \text{sin}^n x + \text{cos}^n x.$ For how many $x$ in $[0,\pi]$ is it true that

\[6f_{4}(x)-4f_{6}(x)=2f_{2}(x)?\]

$\text{(A) }2 \qquad \text{(B) }4  \qquad \text{(C) }6 \qquad \text{(D) }8 \qquad \text{(E) more than }8$

Solution

Problem 11

Let $t_n = \frac{n(n+1)}{2}$ be the $n$th triangular number. Find

\[\frac{1}{t_1} + \frac{1}{t_2} + \frac{1}{t_3} + ... + \frac{1}{t_{2002}}\]

$\text{(A) }\frac {4003}{2003} \qquad \text{(B) }\frac {2001}{1001} \qquad \text{(C) }\frac {4004}{2003} \qquad \text{(D) }\frac {4001}{2001} \qquad \text{(E) }2$

Solution

Problem 12

For how many positive integers $n$ is $n^3 - 8n^2 + 20n - 13$ a prime number?

$\text{(A) one} \qquad \text{(B) two} \qquad \text{(C) three} \qquad \text{(D) four} \qquad \text{(E) more than four}$

Solution

Problem 13

What is the maximum value of $n$ for which there is a set of distinct positive integers $k_1, k_2, ... k_n$ for which

\[k^2_1 + k^2_2 + ... + k^2_n = 2002?\]

$\text{(A) }14 \qquad \text{(B) }15 \qquad \text{(C) }16 \qquad \text{(D) }17 \qquad \text{(E) }18$

Solution

Problem 14

Find $i + 2i^2 +3i^3 + . . . + 2002i^{2002}.$

$\text{(A) }-999 + 1002i \qquad \text{(B) }-1002 + 999i \qquad \text{(C) }-1001 + 1000i \qquad \text{(D) }-1002 + 1001i \qquad \text{(E) }i$

Solution

Problem 15

There are $1001$ red marbles and $1001$ black marbles in a box. Let $P_s$ be the probability that two marbles drawn at random from the box are the same color, and let $P_d$ be the probability that they are different colors. Find $|P_s-P_d|.$

$\text{(A) }0 \qquad \text{(B) }\frac{1}{2002} \qquad \text{(C) }\frac{1}{2001} \qquad \text{(D) }\frac {2}{2001} \qquad \text{(E) }\frac{1}{1000}$

Solution

Problem 16

The altitudes of a triangle are $12, 15,$ and $20.$ The largest angle in this triangle is

$\text{(A) }72^\circ \qquad \text{(B) }75^\circ \qquad \text{(C) }90^\circ \qquad \text{(D) }108^\circ \qquad \text{(E) }120^\circ$

Solution

Problem 17

Let $f(x) = \sqrt{\sin^4{x} + 4 \cos^2{x}} - \sqrt{\cos^4{x} + 4 \sin^2{x}}.$ An equivalent form of $f(x)$ is

$\text{(A) }1-\sqrt{2}\sin{x} \qquad \text{(B) }-1+\sqrt{2}\cos{x} \qquad \text{(C) }\cos{\frac{x}{2}} - \sin{\frac{x}{2}} \qquad \text{(D) }\cos{x} - \sin{x} \qquad \text{(E) }\cos{2x}$

Solution

Problem 18

If $a,b,c$ are real numbers such that $a^2 + 2b =7$, $b^2 + 4c= -7,$ and $c^2 + 6a= -14$, find $a^2 + b^2 + c^2.$

$\text{(A) }14 \qquad \text{(B) }21 \qquad \text{(C) }28 \qquad \text{(D) }35 \qquad \text{(E) }49$

Solution

Problem 19

In quadrilateral $ABCD$, $m\angle B = m \angle C = 120^{\circ}, AB=3, BC=4,$ and $CD=5.$ Find the area of $ABCD.$

$\text{(A) }15 \qquad \text{(B) }9 \sqrt{3} \qquad \text{(C) }\frac{45 \sqrt{3}}{4} \qquad \text{(D) }\frac{47 \sqrt{3}}{4} \qquad \text{(E) }15 \sqrt{3}$

Solution

Problem 20

Let $f$ be a real-valued function such that

\[f(x) + 2f(\frac{2002}{x}) = 3x\]

for all $x>0.$ Find $f(2).$

$\text{(A) }1000 \qquad \text{(B) }2000 \qquad \text{(C) }3000 \qquad \text{(D) }4000 \qquad \text{(E) }6000$

Solution

Problem 21

Let $a$ and $b$ be real numbers greater than $1$ for which there exists a positive real number $c,$ different from $1$, such that

\[2(\log_a{c} + \log_b{c}) = 9\log_{ab}{c}.\]

Find the largest possible value of $\log_a b.$

$\text{(A) }\sqrt{2} \qquad \text{(B) }\sqrt{3} \qquad \text{(C) }2 \qquad \text{(D) }\sqrt{6} \qquad \text{(E) }3$

Solution

Problem 22

Under the new AMC $10, 12$ scoring method, $6$ points are given for each correct answer, $2.5$ points are given for each unanswered question, and no points are given for an incorrect answer. Some of the possible scores between $0$ and $150$ can be obtained in only one way, for example, the only way to obtain a score of $146.5$ is to have $24$ correct answers and one unanswered question. Some scores can be obtained in exactly two ways, for example, a score of $104.5$ can be obtained with $17$ correct answers, $1$ unanswered question, and $7$ incorrect, and also with $12$ correct answers and $13$ unanswered questions. There are (three) scores that can be obtained in exactly three ways. What is their sum?

$\text{(A) }175 \qquad \text{(B) }179.5 \qquad \text{(C) }182 \qquad \text{(D) }188.5 \qquad \text{(E) }201$

Solution

Problem 23

The equation $z(z+i)(z+3i)=2002i$ has a zero of the form $a+bi$, where $a$ and $b$ are positive real numbers. Find $a.$

$\text{(A) }\sqrt{118} \qquad \text{(B) }\sqrt{210} \qquad \text{(C) }2 \sqrt{210} \qquad \text{(D) }\sqrt{2002} \qquad \text{(E) }100 \sqrt{2}$

Solution

Problem 24

Let $ABCD$ be a regular tetrahedron and Let $E$ be a point inside the face $ABC.$ Denote by $s$ the sum of the distances from $E$ to the faces $DAB, DBC, DCA,$ and by $S$ the sum of the distances from $E$ to the edges $AB, BC, CA.$ Then $\frac{s}{S}$ equals

$\text{(A) }\sqrt{2} \qquad \text{(B) }\frac{2 \sqrt{2}}{3} \qquad \text{(C) }\frac{\sqrt{6}}{2} \qquad \text{(D) }2 \qquad \text{(E) }3$

Solution

Problem 25

Let $a$ and $b$ be real numbers such that $\sin{a} + \sin{b} = \frac{\sqrt{2}}{2}$ and $\cos {a} + \cos {b} = \frac{\sqrt{6}}{2}.$ Find $\sin{(a+b)}.$

$\text{(A) }\frac{1}{2} \qquad \text{(B) }\frac{\sqrt{2}}{2} \qquad \text{(C) }\frac{\sqrt{3}}{2} \qquad \text{(D) }\frac{\sqrt{6}}{2} \qquad \text{(E) }1$

Solution

See also

2002 AMC 12P (ProblemsAnswer KeyResources)
Preceded by
2001 AMC 12 Problems
Followed by
2002 AMC 12A Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png