Difference between revisions of "2023 SSMO Team Round Problems/Problem 13"

(Created page with "==Problem== Let <math>D(n)</math> denote the product of all divisors of <math>n</math> Let <math>P(i,j)</math> denote the set of all integers that are both a multiple of <math...")
 
 
Line 5: Line 5:
 
\]
 
\]
 
Suppose <math>\sum_{k=2}^{\infty}G(k)</math> is <math>\frac{a+b\sqrt{c}}{d}</math>. Find the value of <math>a+b+c+d</math>.
 
Suppose <math>\sum_{k=2}^{\infty}G(k)</math> is <math>\frac{a+b\sqrt{c}}{d}</math>. Find the value of <math>a+b+c+d</math>.
 
[[2022 SSMO Team Round Problems/Problem 13|Solution]]
 
==Problem 14==
 
 
Find the sum of all perfect squares of the form <math>2p^3 - 5p^2q + q^2</math> where <math>p</math> and <math>q</math> are positive integers such <math>p</math> is prime and <math>p \nmid q</math>.
 
  
 
==Solution==
 
==Solution==

Latest revision as of 21:25, 15 December 2023

Problem

Let $D(n)$ denote the product of all divisors of $n$ Let $P(i,j)$ denote the set of all integers that are both a multiple of $i$ and a factor of $j.$ Let \[ -F(a) = \sqrt{\left|\log_{10}\left(\frac{D(10^{a})}{\prod_{\omega\in P(10^2,10^{a+2})}\omega}\right)\right|}\text{ and }G(n) = \sqrt[n-1]{\prod_{i=2}^{n}10^{F(i)}}. \] Suppose $\sum_{k=2}^{\infty}G(k)$ is $\frac{a+b\sqrt{c}}{d}$. Find the value of $a+b+c+d$.

Solution