Difference between revisions of "Bisector"
(→Bisector and circumcircle) |
(→Bisectrix and bisector) |
||
(17 intermediate revisions by the same user not shown) | |||
Line 12: | Line 12: | ||
Similarly <math>BC' = \frac {a \cdot c}{a+b}, B'C = \frac {a \cdot b}{a+b}. </math> | Similarly <math>BC' = \frac {a \cdot c}{a+b}, B'C = \frac {a \cdot b}{a+b}. </math> | ||
− | <cmath>\frac {BI}{IB'} = \frac {a}{B'C} = \frac{a+c}{b} \implies \frac {BI}{BB'} = \frac {a+c}{a + b +c}.</cmath> | + | <cmath>\frac {BI}{IB'} = \frac {a}{B'C} = \frac{a+c}{b} \implies \frac {BI}{BB'} = \frac {a+c}{a + b +c} \implies \frac {B'I}{BI} = \frac {B'B - BI}{BI} =\frac {b}{a+c}.</cmath> |
<cmath> \frac {DA'}{DC'} = \frac {BA'}{BC'} = \frac {a+ b}{b +c}.</cmath> | <cmath> \frac {DA'}{DC'} = \frac {BA'}{BC'} = \frac {a+ b}{b +c}.</cmath> | ||
Line 20: | Line 20: | ||
Bisector <math>BD = 2 \frac {BC' \cdot BA'}{BC' + BA'} \cos \beta \implies</math> | Bisector <math>BD = 2 \frac {BC' \cdot BA'}{BC' + BA'} \cos \beta \implies</math> | ||
− | <cmath>\frac {BD}{BB'} = \frac{a+c}{a+2b+c}.</cmath> | + | <cmath>\frac {BD}{BB'} = \frac{a+c}{a+2b+c} \implies \frac {B'D}{BD} = \frac {BB' - BD}{BD} = \frac{2b}{a+c} = 2\frac {B'I}{BI}.</cmath> |
'''vladimir.shelomovskii@gmail.com, vvsss''' | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
− | == | + | |
− | [[File: | + | ==Bisectors and tangent== |
− | + | [[File:Bisectors tangent.png|450px|right]] | |
+ | Let a triangle <math>\triangle ABC (\angle BAC > \angle BCA)</math> and it’s circumcircle <math>\Omega</math> be given. | ||
+ | |||
+ | Let segments <math>BD, D \in AC</math> and <math>BE, E \in AC,</math> be the internal and external bisectors of <math>\triangle ABC.</math> | ||
+ | The tangent to <math>\Omega</math> at <math>B</math> meet <math>AC</math> at point <math>M.</math> | ||
+ | Prove that | ||
− | + | a)<math>EM = DM = BM,</math> | |
+ | |||
+ | b)<math> \frac {1}{BM} = \frac {1}{AD} - \frac {1}{CD},</math> | ||
+ | |||
+ | c)<math>\frac {AD^2}{CD^2}=\frac {AM}{CM}.</math> | ||
<i><b>Proof</b></i> | <i><b>Proof</b></i> | ||
− | + | a) <math>\angle ABM = \angle ACB = \frac {\overset{\Large\frown} {AB}}{2} \implies \angle ADB = \angle CBD + \angle BCD = \angle ABD + \angle ABM = \angle MBD \implies BM = DM.</math> | |
− | + | <math>\angle DBE = 90^\circ \implies M</math> is circumcenter <math>\triangle BDE \implies EM = MD.</math> | |
− | + | ||
− | + | b) <math> \frac {AD}{DC} = \frac {AB}{BC} = \frac {AE}{CE} = \frac {DE – AD}{DE + CD} \implies \frac {1}{AD} - \frac {1}{CD} = \frac {2}{DE} =\frac {1}{BM}.</math> | |
− | < | + | |
− | + | c) <cmath> \frac {AM}{CM} = \frac {MD – AD}{MD + CD} =\frac {1 –\frac {AD}{BM}}{1 + \frac {CD}{BM}} = \frac {AD}{CD} : \frac {CD}{AD} = \frac {AD^2}{CD^2}.</cmath> | |
− | <cmath>\frac { | ||
'''vladimir.shelomovskii@gmail.com, vvsss''' | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
+ | ==Proportions for bisectors A== | ||
==Bisector and circumcircle== | ==Bisector and circumcircle== | ||
Line 62: | Line 72: | ||
<cmath>2\angle IBD = 2\angle EBD = \overset{\Large\frown} {EC} + \overset{\Large\frown} {CD} = \overset{\Large\frown} {AE} + \overset{\Large\frown} {BD} = 2 \angle BID.</cmath> | <cmath>2\angle IBD = 2\angle EBD = \overset{\Large\frown} {EC} + \overset{\Large\frown} {CD} = \overset{\Large\frown} {AE} + \overset{\Large\frown} {BD} = 2 \angle BID.</cmath> | ||
Incenter <math>J</math> belong the bisector <math>BI</math> which is the median of isosceles <math>\triangle IDB.</math> | Incenter <math>J</math> belong the bisector <math>BI</math> which is the median of isosceles <math>\triangle IDB.</math> | ||
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | ==Some properties of the angle bisectors== | ||
+ | [[File:Bisector division B.png|450px|right]] | ||
+ | Let a triangle <math>\triangle ABC, BC = a, AC = b, AB = c,</math> | ||
+ | <math>\angle BAC = 2\alpha, \angle ABC = 2\beta, \angle ACB = 2\gamma</math> be given. | ||
+ | |||
+ | Let <math>R, \Omega, O, r, \omega, I</math> be the circumradius, circumcircle, circumcenter, inradius, incircle, and inradius of <math>\triangle ABC,</math> respectively. | ||
+ | |||
+ | Let segments <math>AA', BB',</math> and <math>CC'</math> be the angle bisectors of <math>\triangle ABC,</math> lines <math>AA', BB',</math> and <math>CC'</math> meet <math>\Omega</math> at <math>D,E,</math> and <math>F, \omega</math> meet <math>BC, AC,</math> and <math>AB</math> at <math>A'', B'', C''.</math> | ||
+ | |||
+ | Let <math>N</math> be the point on tangent to <math>\Omega</math> at point <math>B</math> such, that <math>NI || AC.</math> | ||
+ | |||
+ | Let bisector <math>AB</math> line <math>FM</math> meet <math>BB'</math> at point <math>H</math> and <math>AA'</math> at point <math>G (O \in FM).</math> | ||
+ | |||
+ | Denote <math>Q</math> circumcenter of <math>\triangle ABB', P</math> - the point where bisector <math>AA'</math> meet circumcircle of <math>\triangle ABB'.</math> | ||
+ | |||
+ | Prove:<math> a) BN = \frac {2Rr}{|a-c|},</math> <math>b) \frac {FQ}{QG} = \frac {a}{c},</math> | ||
+ | |||
+ | c) lines <math>FD, A'C',</math> and <math>MP</math> are concurrent at <math>N.</math> | ||
+ | |||
+ | <i><b>Proof</b></i> | ||
+ | |||
+ | WLOG, <math>\alpha > \gamma.</math> A few preliminary formulas: | ||
+ | <cmath>\alpha + \beta + \gamma = 90^\circ \implies \sin (\alpha + \beta) = \cos \gamma.</cmath> | ||
+ | <cmath>\frac {a-b}{c} = \frac {\sin 2\alpha - \sin 2 \beta}{\sin 2\gamma} = \frac {2 \sin (\alpha - \beta) \cos(\alpha + \beta)} {2 \sin (\alpha + \beta) \cos (\alpha + \beta)} = \frac {\sin (\alpha - \beta)}{\cos \gamma}.</cmath> | ||
+ | <cmath>\frac {a+b}{c} = \frac {\sin 2\alpha + \sin 2 \beta}{\sin 2\gamma} = \frac {2 \sin (\alpha + \beta) \cos(\alpha - \beta)} {2 \sin (\alpha + \beta) \cos (\alpha + \beta)} = \frac {\cos (\alpha - \beta)}{\sin \gamma}.</cmath> | ||
+ | <cmath>a^2 + c^2 - 2ac\cos 2\beta = b^2 \implies 4 \cos^2 \beta = \frac {(a+b+c)(a+c-b)}{ac}.</cmath> | ||
+ | a) <cmath>\triangle ACC' : \frac {AC}{AC'} = \frac{\sin(180^\circ - 2 \alpha - \gamma)}{\sin \gamma}= \frac{\cos(\alpha - \beta)}{\sin \gamma}= \frac{a+b}{c}.</cmath> | ||
+ | <cmath>\angle FBC' = \gamma, \angle BFC' = 2 \alpha, BF = FI \implies \frac {FI}{FC'} = \frac {a+b}{c}.</cmath> | ||
+ | <cmath>\frac {MG}{MF} = \frac {AM \tan \alpha}{BM \tan \gamma} =\frac {\tan \alpha}{\tan \gamma} = \frac {CB''}{AC''}=\frac{a+b-c}{b+c-a}.</cmath> | ||
+ | <cmath>\angle AOG = 2 \gamma, \angle AGM = 90^\circ - \alpha \implies \angle OAG = |90^\circ - \alpha - 2\gamma| = |\beta - \gamma| \implies \frac {GO}{AO} = \frac {|\sin (\beta - \gamma)|}{\cos \alpha} = \frac{|b-c|}{a}.</cmath> | ||
+ | <cmath>\angle BFD = \alpha,\angle NBD = 2\gamma + 2\beta + \alpha = 180^\circ - \alpha, \angle NBF = \angle BDF = \gamma \implies</cmath> | ||
+ | <cmath>\frac {NB}{NF} = \frac {ND}{NB} = \frac {\sin \gamma}{\sin \alpha} \implies \frac {NF}{ND} = \frac {\sin^2 \gamma}{\sin^2 \alpha} = \frac {\sin 2\gamma}{\sin 2\alpha} \cdot \frac {\tan \gamma}{\tan \alpha} = \frac {c}{a} \cdot \frac{b+c-a}{a+b-c}.</cmath> | ||
+ | <cmath>\angle NBI = \angle NIB = 2\gamma + \beta = 90^\circ +\gamma - \alpha \implies \cos \angle NBI = \sin (\alpha - \gamma).</cmath> | ||
+ | |||
+ | <cmath>BI = \frac {BC''}{\cos \beta} = \frac {a+c-b}{2\cos \beta} \implies NB = \frac {BI}{2 \sin |\alpha - \gamma|} | ||
+ | = \frac{a+c-b}{4\cos^2 \beta} \cdot \frac {\cos \beta}{\sin |\alpha - \gamma|} = \frac{abc}{|a-c|(a+b+c)} = \frac {2Rr}{|a-c|}.</cmath> | ||
+ | |||
+ | b)<cmath>\triangle AIC \sim \triangle FID, k = \frac {IB''}{IL} = \frac {2r}{IB} = 2 \sin \beta \implies FD = \frac {AC}{k} = \frac {b}{2 \sin \beta}.</cmath> | ||
+ | <math>Q</math> is the circumcenter of <math>\triangle ABB' \implies \angle BQM = \angle AB'B \implies \angle ABQ = \alpha - \gamma.</math> | ||
+ | <cmath>BQ = \frac {BM}{\cos (\alpha - \gamma)} = \frac {c}{2} \cdot \frac {b}{(a+c) \sin \beta} = \frac {bc}{2(a+c) \sin \beta}.</cmath> | ||
+ | <cmath>PQ \perp BB' \implies PQ || FD \implies \triangle GQP \sim \triangle GFD, k = \frac{FD}{QP} = \frac{FD}{QB} = \frac {a+c}{c} \implies \frac {FQ}{QG} = k - 1 = \frac {a}{c} = \frac {DP}{PG}.</cmath> | ||
+ | |||
+ | c)<math>BF = FI, BD = DI, BN = NI \implies N, F, D</math> are collinear. | ||
+ | |||
+ | <cmath>\frac {NF}{ND} = \frac {c}{a} \cdot \frac {b+c-a}{a+b-c}, \frac {IC'}{C'F} = \frac {a+b-c}{c}, \frac {IA'}{A'D} = \frac {c+b-a}{a} \implies</cmath> | ||
+ | <math>N, C', A'</math> are collinear and so on. Using Cheva's theorem we get the result. | ||
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
+ | ==Proportions for bisectors== | ||
+ | [[File:Bisector 60.png|400px|right]] | ||
+ | The bisectors <math>AE</math> and <math>CD</math> of a triangle ABC with <math>\angle B = 60^\circ</math> meet at point <math>I.</math> | ||
+ | |||
+ | Prove <math>\frac {CD}{AE} = \frac {BC}{AB}, DI = IE.</math> | ||
+ | |||
+ | <i><b>Proof</b></i> | ||
+ | |||
+ | Denote the angles <math>A = 2\alpha, B = 2\beta = 60^\circ, C = 2 \gamma.</math> | ||
+ | <math>\angle AIC = 180^\circ - \alpha - \gamma = 90^\circ + \beta = 120^\circ \implies B, D, I,</math> and <math>E</math> are concyclic. | ||
+ | <cmath>\angle BEA = \angle BEI = \angle ADC.</cmath> | ||
+ | The area of the <math>\triangle ABC</math> is | ||
+ | <cmath>[ABC] = AB \cdot h_C = AB \cdot CD \cdot \sin \angle ADC = BC \cdot AE \cdot \sin \angle AEB \implies</cmath> | ||
+ | <cmath>\frac {CD}{AE} = \frac {BC}{AB} = \frac {a}{c}.</cmath> | ||
+ | <cmath>\frac {DI}{IE} = \frac {DI}{CD} \cdot \frac {AE}{IE}\cdot \frac {CD}{AE}= \frac {c}{a+b+c} \cdot \frac {a+b+c} {a} \cdot \frac {a}{c} = 1.</cmath> | ||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | ==Bisectrix and bisector== | ||
+ | [[File:Bisector div.png|400px|right]] | ||
+ | Let triangle <math>\triangle ABC</math> be given. | ||
+ | |||
+ | Let <math>I</math> be the incenter, <math>O</math> be the circumcenter, <math>\Omega</math> be the circumcircle of <math>\triangle ABC,</math> | ||
+ | <cmath>D = AI \cap BC, A' = AI \cap \Omega, B' = BI \cap \Omega, C' = CI \cap \Omega.</cmath> | ||
+ | Let <math>\ell</math> be the bisector of <math>AD.</math> | ||
+ | <cmath>E = BI \cap \ell, F = CI \cap \ell, K = DE \cap AC, L = DF \cap AB.</cmath> | ||
+ | Let <math>Q</math> be the circumcenter of <math>\odot LFI.</math> | ||
+ | |||
+ | Prove that the points <math>A, K, E, I, L,</math> and <math>F</math> are concyclic and <math>Q = AO \cap B'C'.</math> | ||
+ | |||
+ | <i><b>Proof</b></i> | ||
+ | |||
+ | Denote <math>a = BC, b = AC, c = AB, P = AD \cap B'C', M</math> the midpoint <math>AD, M\in \ell.</math> | ||
+ | |||
+ | It is known that <math>P</math> is the midpoint <math>AI, B'C' \perp AD,\frac {AI}{ID} = \frac{A'I}{A'D}=\frac{b+c}{a}.</math> | ||
+ | |||
+ | (see [[Bisector | Bisector and circumcircle]]) | ||
+ | <cmath>\frac {PI}{PM} = \frac{AI / 2}{AD / 2 - AI / 2}= \frac {AI}{ID} = \frac{A'I}{A'D}=\frac{b+c}{a} \implies \frac {IP}{IM} = \frac{IA'}{ID}=\frac{b+c}{b+c-a}.</cmath> | ||
+ | <math>B'C' || FE \implies </math> the homothety centered at point <math>I</math> with ratio <math>k = \frac{b+c}{b+c-a}</math> maps | ||
+ | |||
+ | <math>\triangle A'B'C'</math> into <math>\triangle DFE</math> and <math>\Omega = \odot A'B'C'</math> into <math>\odot DEF.</math> | ||
+ | |||
+ | Point <math>A</math> is symmetrical to point <math>D</math> with respect to the line <math>\ell,</math> so radii of <math>\odot AEF</math> and <math> \odot DEF</math> are equal. | ||
+ | |||
+ | Denote <math>r</math> the radius of <math>\odot AEF, R</math> the radius of <math>\Omega.</math> | ||
+ | |||
+ | Then <math>\frac {r}{R} = \frac{b+c}{b+c-a} = \frac{AI}{AA'}. </math> | ||
+ | <math>CC' \perp DE, \angle ACI = \angle DCI \implies CK = CD =\frac {ab}{b+c}.</math> | ||
+ | |||
+ | Similarly, <math>BD = BL = \frac {ac}{b+c}.</math> | ||
+ | |||
+ | So <math>\frac{AK}{AC} = \frac{AC - CK}{AC} =\frac{b+c}{b+c-a} = k = \frac{AL}{AB}.</math> | ||
+ | |||
+ | Therefore, the homothety centered at point <math>A</math> with ratio <math>k</math> maps quadrangle <math>ALIK</math> into quadrangle <math>ABA'C</math> | ||
+ | and <math>\odot ALIK</math> into <math>\Omega.</math> | ||
+ | |||
+ | <math>\angle ALF = \angle ALD = 90^\circ + \angle ABI, \angle AIF = \angle AIC' = 90^\circ - \angle ABI \implies</math> points <math>A, L, F,</math> and <math>I</math> are concyclic. | ||
+ | |||
+ | Similarly, points <math>A, K, E,</math> and <math>I</math> are concyclic. So points <math>A, K, E, L, F,</math> and <math>I</math> are concyclic. | ||
+ | |||
+ | The center <math>Q</math> of this circle lyes on radius <math>AO</math> of <math>\Omega</math> and <math>\frac{AO}{AQ} = \frac{b+c}{b+c-a}.</math> | ||
+ | |||
+ | The homothety centered at point <math>A</math> with ratio <math>k</math> maps the point <math>P</math> (midpoint <math>AI</math>) into midpoint <math>AA',</math> so <math>Q \in B'PC'.</math> | ||
+ | |||
+ | <i><b>Corollary</b></i> | ||
+ | |||
+ | Points <math>A, B, D,</math> and <math>E</math> are concyclic <math>(\angle AED + \angle ABC = 180^\circ.)</math> | ||
+ | |||
+ | Points <math>A, C, D,</math> and <math>F</math> are concyclic. | ||
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
+ | ==Seven lines crossing point== | ||
+ | [[File:2024 11 B.png|390px|right]] | ||
+ | Let <math>I, \Omega, M, M_0</math> be the incenter, circumcircle, and the midpoints of sides <math>BC, AB</math> of a <math>\triangle ABC.</math> | ||
+ | |||
+ | Let <math>AA'', BB'', CC''</math> be the bisectors of a <math>\triangle ABC.</math> | ||
+ | |||
+ | <math>A' = AA'' \cap \Omega, B' = BB'' \cap \Omega, C' = CC'' \cap \Omega, L</math> be the midpoint of <math>BB''.</math> | ||
+ | |||
+ | The points <math>U \in AA''</math> and <math>V \in CC''</math> be such points that <math>L \in UV, UV \perp BB''.</math> | ||
+ | |||
+ | Denote points <math>A_0 = B'C' \cap AB, A_1 = B'C' \cap AC,</math> | ||
+ | <cmath>B_0 = BC \cap A'C', B_1 = AB \cap A'C', C_0 = AC \cap A'B', C_1 = BC \cap A'B'.</cmath> | ||
+ | |||
+ | Prove that the lines <math>A'C', UM_0, A''C'', MV, A_0I,</math> and the tangent to the circumcircle of <math>\triangle ABC</math> at <math>B</math> are concurrent. | ||
+ | |||
+ | <i><b>Proof</b></i> | ||
+ | |||
+ | 1. Denote <math>AB = c, BC = a, AC = b, \angle BAC = 2 \alpha, \angle ABC = 2 \beta, \angle ACB = 2 \gamma.</math> | ||
+ | <math>\overset{\Large\frown} {AB'} = \overset{\Large\frown} {CB'} \implies \angle AC'B' = \angle CC'B'.</math> | ||
+ | Similarly <math>\angle AB'C' = \angle BB'C', \angle C'AI = \angle C'IA = \alpha + \gamma \implies B'C'</math> is the bisector of <math>AI.</math> | ||
+ | Similarly, <math>A'C'</math> is the bisector of <math>BI, A'B'</math> is the bisector of <math>CI.</math> | ||
+ | |||
+ | Therefore <math>AA_0IA_1, BB_0IB_1, CC_0IC_1</math> are rhombus. | ||
+ | |||
+ | So triples of points <math>A_0,I,C_1, B_0,I,A_1, C_0,I,B_1</math> are collinear, lines <math>A_0I || AC, B_0I || AB, C_0I || AC.</math> | ||
+ | <cmath>\triangle ABC \sim \triangle A_0IB_1 \sim \triangle IB_0C_1 \sim \triangle A_1IC_0.</cmath> | ||
+ | It is known that <math>\frac {AI}{IA''} = \frac {b+c}{a}, \frac {BI}{IB''} = \frac {a+c}{b} \implies BB_1 : B_1A_0 : A_0A = a : c : b.</math> | ||
+ | |||
+ | Similarly, <math>BB_0 : B_0C_1 : C_1C = c : a : b.</math> | ||
+ | |||
+ | <math>IC</math> is the bisector <math>\angle A_0IB_1 \implies \frac {A_0C''}{B_1C''} = \frac {AC}{BC} = \frac {b}{a} \implies BB_1 : B_1C'' : C''A_0 : A_0A = a(a + b) : ac : bc : b(a + b).</math> | ||
+ | |||
+ | Similarly, <math>BB_0 : B_0A'' : A''C_1 : C_1C = c(c + b) : ac : ab : b(c + b).</math> | ||
+ | |||
+ | Denote <math>D</math> the crosspoint of the tangent to the circumcircle of <math>\triangle ABC</math> at <math>B</math> and <math>A_0I.</math> | ||
+ | |||
+ | <math>\angle DBI = \angle BCB' = \angle BCA + 2 \overset{\Large\frown} {AB'} = 2 \gamma + \beta = \angle B_1IA_0 + \angle B_1IB = \angle DIB \implies BD = ID.</math> | ||
+ | <math>A'C'</math> is the bisector <math>BI \implies D \in A'C'.</math> | ||
+ | |||
+ | 2. Let us consider the points <math>A'',C'',</math> and <math>D.</math> | ||
+ | <cmath>\frac {BB_1} {B_1A_0} = \frac {a}{c}, \frac {B_0C_1} {BB_0} = \frac {a}{c}.</cmath> | ||
+ | |||
+ | We use Menelaus' Theorem for <math>\triangle BA_0C_1</math> and line <math>DB_1B_0</math> and get <math>\frac {DA_0} {DC_1} = \frac {c^2}{a^2}.</math> | ||
+ | <cmath>\frac {BC''}{C''A_0} = \frac {BB_1+B_1C''}{C''A_0} = \frac {a(a+b+c)}{bc}.</cmath> | ||
+ | <cmath>\frac {C_1A''}{BA''} = \frac {C_1A''}{BB_0+B_0A''} = \frac {ab}{c(a+b+c)} \implies \frac {BC''}{C''A_0} \cdot \frac {C_1A''}{BA''} = \frac {a^2}{c^2}.</cmath> | ||
+ | We use Menelaus' Theorem for <math>\triangle BA_0C_1</math> and get that points <math>A'',C'',</math> and <math>D</math> are collinear. | ||
+ | [[File:2024 11 C.png|390px|right]] | ||
+ | 3.Let us consider the points <math>U, M_0,</math> and <math>D.</math> | ||
+ | <cmath>\frac {AM_0}{B_1M_0} = \frac {2AM_0}{2BM_0 - 2BB_1} = \frac {c}{c - 2 \frac{ac}{a+b+c}} = \frac{a +b + c}{b+c - a}.</cmath> | ||
+ | <cmath>\frac {BA_0}{B_1A_0} = \frac {BB_1 + B_1A_0}{B_1A_0} = \frac {a+c}{c},</cmath> | ||
+ | <cmath>\frac {C_1B_0}{C_1B} = \frac {C_1B_0}{C_1B_0 + BB_0} = \frac {a}{a + c}.</cmath> | ||
+ | We use Menelaus' Theorem for <math>\triangle BB_0B_1</math> and line <math>DA_0B_1</math> and get <cmath>\frac {DB_0} {DB_1} = \frac {a}{c}.</cmath> | ||
+ | <cmath>B_1I || BC, \frac {IA'}{A''A'} = \frac{b+c}{a} = \frac{B_1A'}{B_0A'} \implies \frac{DA'}{DB_1} = \frac {ab}{c(b+c-a)}.</cmath> | ||
+ | Let <math>F</math> be the midpoint <math>BI, FA' || LU \implies \frac {A'I}{A'U} = \frac {FI}{FL} = \frac {BI}{BB'' - BI} = \frac {BI}{B''I} = \frac{a+c}{b}.</math> | ||
+ | <math>\frac {A'U}{UA} = \frac {A'I - IU}{AI + IU} = \frac {\frac {A'I}{IU} - 1}{\frac {AI}{IA'} \cdot \frac {A'I}{IU}+1} = \frac{ab}{c(a+b+c)}.</math> | ||
+ | So <math>\frac {AM_0}{B_1M_0} \cdot \frac {A'U}{UA} \cdot \frac{DA'}{DB_1} = 1.</math> | ||
+ | |||
+ | We use Menelaus' Theorem for <math>\triangle AB_1A'</math> and get that points <math>U, M_0,</math> and <math>D</math> are collinear. | ||
+ | |||
+ | Similarly points <math>V, M,</math> and <math>D</math> are collinear. | ||
'''vladimir.shelomovskii@gmail.com, vvsss''' | '''vladimir.shelomovskii@gmail.com, vvsss''' |
Latest revision as of 08:28, 5 October 2024
Contents
Division of bisector
Let a triangle be given.
Let and be the bisectors of
he segments and meet at point Find
Solution
Similarly
Denote Bisector
Bisector vladimir.shelomovskii@gmail.com, vvsss
Bisectors and tangent
Let a triangle and it’s circumcircle be given.
Let segments and be the internal and external bisectors of The tangent to at meet at point Prove that
a)
b)
c)
Proof
a) is circumcenter
b)
c) vladimir.shelomovskii@gmail.com, vvsss
Proportions for bisectors A
Bisector and circumcircle
Let a triangle be given. Let segments and be the bisectors of The lines and meet circumcircle at points respectively.
Find Prove that circumcenter of lies on
Solution
Incenter belong the bisector which is the median of isosceles
vladimir.shelomovskii@gmail.com, vvsss
Some properties of the angle bisectors
Let a triangle be given.
Let be the circumradius, circumcircle, circumcenter, inradius, incircle, and inradius of respectively.
Let segments and be the angle bisectors of lines and meet at and meet and at
Let be the point on tangent to at point such, that
Let bisector line meet at point and at point
Denote circumcenter of - the point where bisector meet circumcircle of
Prove:
c) lines and are concurrent at
Proof
WLOG, A few preliminary formulas: a)
b) is the circumcenter of
c) are collinear.
are collinear and so on. Using Cheva's theorem we get the result.
vladimir.shelomovskii@gmail.com, vvsss
Proportions for bisectors
The bisectors and of a triangle ABC with meet at point
Prove
Proof
Denote the angles and are concyclic. The area of the is vladimir.shelomovskii@gmail.com, vvsss
Bisectrix and bisector
Let triangle be given.
Let be the incenter, be the circumcenter, be the circumcircle of Let be the bisector of Let be the circumcenter of
Prove that the points and are concyclic and
Proof
Denote the midpoint
It is known that is the midpoint
(see Bisector and circumcircle) the homothety centered at point with ratio maps
into and into
Point is symmetrical to point with respect to the line so radii of and are equal.
Denote the radius of the radius of
Then
Similarly,
So
Therefore, the homothety centered at point with ratio maps quadrangle into quadrangle and into
points and are concyclic.
Similarly, points and are concyclic. So points and are concyclic.
The center of this circle lyes on radius of and
The homothety centered at point with ratio maps the point (midpoint ) into midpoint so
Corollary
Points and are concyclic
Points and are concyclic.
vladimir.shelomovskii@gmail.com, vvsss
Seven lines crossing point
Let be the incenter, circumcircle, and the midpoints of sides of a
Let be the bisectors of a
be the midpoint of
The points and be such points that
Denote points
Prove that the lines and the tangent to the circumcircle of at are concurrent.
Proof
1. Denote Similarly is the bisector of Similarly, is the bisector of is the bisector of
Therefore are rhombus.
So triples of points are collinear, lines It is known that
Similarly,
is the bisector
Similarly,
Denote the crosspoint of the tangent to the circumcircle of at and
is the bisector
2. Let us consider the points and
We use Menelaus' Theorem for and line and get We use Menelaus' Theorem for and get that points and are collinear.
3.Let us consider the points and We use Menelaus' Theorem for and line and get Let be the midpoint So
We use Menelaus' Theorem for and get that points and are collinear.
Similarly points and are collinear.
vladimir.shelomovskii@gmail.com, vvsss