Difference between revisions of "2004 AMC 12A Problems/Problem 21"

(solution, that was surprisingly easy ..)
 
(Solutions: sol 1a)
 
(4 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
If <math>\sum_{n = 0}^{\infty}{\cos^{2n}\theta = 5</math>, what is the value of <math>\cos{2\theta}</math>?
+
If <math>\sum_{n = 0}^{\infty}{\cos^{2n}}\theta = 5</math>, what is the value of <math>\cos{2\theta}</math>?
  
 
<math>\text {(A)} \frac15 \qquad \text {(B)} \frac25 \qquad \text {(C)} \frac {\sqrt5}{5}\qquad \text {(D)} \frac35 \qquad \text {(E)}\frac45</math>
 
<math>\text {(A)} \frac15 \qquad \text {(B)} \frac25 \qquad \text {(C)} \frac {\sqrt5}{5}\qquad \text {(D)} \frac35 \qquad \text {(E)}\frac45</math>
  
== Solution ==
+
== Solutions ==
 +
===Solution 1===
 
This is an infinite [[geometric series]], which sums to <math>\frac{\cos^0 \theta}{1 - \cos^2 \theta} = 5 \Longrightarrow 1 = 5 - 5\cos^2 \theta \Longrightarrow \cos^2 \theta = \frac{4}{5}</math>. Using the formula <math>\cos 2\theta = 2\cos^2 \theta - 1 = 2\left(\frac 45\right) - 1 = \frac 35 \Rightarrow \mathrm{(D)}</math>.
 
This is an infinite [[geometric series]], which sums to <math>\frac{\cos^0 \theta}{1 - \cos^2 \theta} = 5 \Longrightarrow 1 = 5 - 5\cos^2 \theta \Longrightarrow \cos^2 \theta = \frac{4}{5}</math>. Using the formula <math>\cos 2\theta = 2\cos^2 \theta - 1 = 2\left(\frac 45\right) - 1 = \frac 35 \Rightarrow \mathrm{(D)}</math>.
 +
 +
====Solution 1a====
 +
 +
We can more directly solve this with superficially less work. Again, applying the formula for an infinite geometric series,
 +
 +
<cmath>\sum_{i=0}^{\infty}\cos^{2i}\theta=\dfrac1{1-\cos^2\theta}=\dfrac1{\sin^2\theta}=5.</cmath>
 +
 +
Thus, <math>\sin^2\theta=\dfrac15</math>, so <math>\cos(2\theta)=1-2\sin^2\theta=1-\dfrac25=\dfrac35.</math> QED.
 +
 +
~Technodoggo
 +
 +
===Solution 2===
 +
<cmath>\sum_{n = 0}^{\infty}{\cos^{2n}}\theta = \cos^{0}\theta + \cos^{2}\theta + \cos^{4}\theta + ... = 5</cmath>
 +
 +
Multiply both sides by <math>\cos^{2}\theta</math> to get:
 +
 +
<cmath>\cos^{2}\theta + \cos^{4}\theta + \cos^{6}\theta + ... = 5*\cos^{2}\theta</cmath>
 +
 +
Subtracting the two equations, we get:
 +
 +
<cmath>\cos^{0}\theta=5-5*\cos^{2}\theta</cmath>
 +
 +
After simplification, we get <math>cos^{2}\theta=\frac{4}{5}</math>. Using the formula <math>\cos 2\theta = 2\cos^2 \theta - 1 = 2\left(\frac 45\right) - 1 = \frac 35 \Rightarrow \mathrm{(D)}</math>.
  
 
== See also ==
 
== See also ==
Line 11: Line 35:
  
 
[[Category:Introductory Trigonometry Problems]]
 
[[Category:Introductory Trigonometry Problems]]
 +
{{MAA Notice}}

Latest revision as of 23:18, 22 October 2024

Problem

If $\sum_{n = 0}^{\infty}{\cos^{2n}}\theta = 5$, what is the value of $\cos{2\theta}$?

$\text {(A)} \frac15 \qquad \text {(B)} \frac25 \qquad \text {(C)} \frac {\sqrt5}{5}\qquad \text {(D)} \frac35 \qquad \text {(E)}\frac45$

Solutions

Solution 1

This is an infinite geometric series, which sums to $\frac{\cos^0 \theta}{1 - \cos^2 \theta} = 5 \Longrightarrow 1 = 5 - 5\cos^2 \theta \Longrightarrow \cos^2 \theta = \frac{4}{5}$. Using the formula $\cos 2\theta = 2\cos^2 \theta - 1 = 2\left(\frac 45\right) - 1 = \frac 35 \Rightarrow \mathrm{(D)}$.

Solution 1a

We can more directly solve this with superficially less work. Again, applying the formula for an infinite geometric series,

\[\sum_{i=0}^{\infty}\cos^{2i}\theta=\dfrac1{1-\cos^2\theta}=\dfrac1{\sin^2\theta}=5.\]

Thus, $\sin^2\theta=\dfrac15$, so $\cos(2\theta)=1-2\sin^2\theta=1-\dfrac25=\dfrac35.$ QED.

~Technodoggo

Solution 2

\[\sum_{n = 0}^{\infty}{\cos^{2n}}\theta = \cos^{0}\theta + \cos^{2}\theta + \cos^{4}\theta + ... = 5\]

Multiply both sides by $\cos^{2}\theta$ to get:

\[\cos^{2}\theta + \cos^{4}\theta + \cos^{6}\theta + ... = 5*\cos^{2}\theta\]

Subtracting the two equations, we get:

\[\cos^{0}\theta=5-5*\cos^{2}\theta\]

After simplification, we get $cos^{2}\theta=\frac{4}{5}$. Using the formula $\cos 2\theta = 2\cos^2 \theta - 1 = 2\left(\frac 45\right) - 1 = \frac 35 \Rightarrow \mathrm{(D)}$.

See also

2004 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png