|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | ==Problem==
| + | #redirect[[2023 AMC 12B Problems/Problem 25]] |
− | A regular pentagon with area <math>1+\sqrt5</math> is printed on paper and cut out. All five vertices are folded to the center of the pentagon, creating a smaller pentagon. What is the area of the new pentagon?
| |
− | | |
− | | |
− | ==Solution 1==
| |
− | | |
− | <asy>
| |
− | unitsize(5cm);
| |
− | | |
− | // Define the vertices of the pentagons
| |
− | pair A, B, C, D, E;
| |
− | pair F, G, H, I, J;
| |
− | | |
− | // Calculate the vertices of the larger pentagon
| |
− | A = dir(90);
| |
− | B = dir(90 - 72);
| |
− | C = dir(90 - 2*72);
| |
− | D = dir(90 - 3*72);
| |
− | E = dir(90 - 4*72);
| |
− | | |
− | // Draw the larger pentagon
| |
− | draw(A--B--C--D--E--cycle);
| |
− | | |
− | pair O = (A+B+C+D+E)/5;
| |
− | pair AA,OO;
| |
− | real gap = 0.02;
| |
− | AA = A+(0,0);
| |
− | OO = O+(0,0);
| |
− | | |
− | draw(AA--OO, blue);
| |
− | | |
− | pair OOO, OAO;
| |
− | OOO = O+(gap,0);
| |
− | OAO = (O+A)/2 + (gap,0);
| |
− | | |
− | draw(OOO--OAO,green);
| |
− | dot(O);
| |
− | dot((O+A)/2);
| |
− | | |
− | label("$r_b$", (O+A)*.7, E,blue);
| |
− | label("$a_s$", (O+A)*.2 +(0+0.18,0.05), E,green);
| |
− | label("$r_s$", O+(-0.175,0.2), E,pink);
| |
− | | |
− | | |
− | real scaleFactor = 1/1.618; // Adjust this value as needed
| |
− | // Rotate the smaller pentagon by 180 degrees
| |
− | F = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 + 180);
| |
− | G = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 72 + 180);
| |
− | H = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 2*72 + 180);
| |
− | I = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 3*72 + 180);
| |
− | J = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 4*72 + 180);
| |
− | | |
− | // Draw the smaller pentagon
| |
− | | |
− | draw(F--G--H--I--J--cycle,red);
| |
− | | |
− | draw(arc(O,(H+I)*.5*.6,H*.6));
| |
− | label("$36^\circ$",O+(+0.05,0.15),NW);
| |
− | draw(O--H,pink);
| |
− | </asy>
| |
− | | |
− | Let <math>r_b</math> and <math>r_s</math> be the circumradius of the big and small pentagon, respectively. Let <math>a_s</math> be the apothem of the smaller pentagon and <math>A_s</math> and <math>A_b</math> be the areas of the smaller and larger pentagon, respectively.
| |
− | | |
− | From the diagram:
| |
− | <cmath>\begin{align*}
| |
− | \cos{36^\circ} &= \dfrac{a_s}{r_s} = \dfrac{\phi}{2} = \dfrac{\sqrt{5}+1}{4}\\
| |
− | a_s &= \dfrac{r_b}{2}\\
| |
− | A_s &= (\dfrac{r_s}{r_b})^2A_b\\
| |
− | &=(\dfrac{a_s}{\cos{36^\circ} r_b})^2 (1+\sqrt{5})\\
| |
− | &=(\dfrac{r_b}{\dfrac{\phi}{2} r_b})^2 (1+\sqrt{5})\\
| |
− | &=(\dfrac{1}{2 \dfrac{\phi}{2}})^2 (1+\sqrt{5})\\
| |
− | &=(\dfrac{2}{\sqrt{5}+1})^2 (1+\sqrt{5})\\
| |
− | &=\dfrac{4}{\sqrt{5}+1} \\
| |
− | &=\dfrac{4(\sqrt{5}-1)}{(\sqrt{5}+1)(\sqrt{5}-1)} \\
| |
− | &=\sqrt{5}-1
| |
− | \end{align*}</cmath>
| |
− | <cmath>\boxed{\textbf{(B) }\sqrt{5}-1}</cmath>
| |
− | ~Technodoggo
| |
− | | |
− | ==Solution 2==
| |
− | Interestingly, we find that the pentagon we need is the one that is represented by the intersection of the diagonals. Through similar triangles and the golden ratio, we find that the side length ratio of the two pentagons is <math>\frac{\sqrt{5}-1}{2}</math> Thus, the answer is <math>\sqrt{5}+1 \cdot (\frac{\sqrt{5}-1}{2})^2 = \sqrt{5}-1</math>. <math>\boxed{\text{B}}</math>
| |
− | ~andliu766
| |