Difference between revisions of "2023 AMC 10B Problems/Problem 17"

m (Solution 1)
(redirect)
(Tag: New redirect)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
== Problem ==
+
#redirect[[2023 AMC 12B Problems/Problem 13]]
A rectangular box 𝒫 has distinct edge lengths 𝑎, 𝑏, and 𝑐. The sum of the lengths of
 
all 12 edges of 𝒫 is 13, the sum of the areas of all 6 faces of 𝒫 is <math>\dfrac{11}{2}</math>, and the volume of 𝒫 is <math>\dfrac{1}{2}</math>. What is the length of the longest interior diagonal connecting two vertices of 𝒫 ?
 
 
 
== Solution 1==
 
 
 
<asy>
 
import geometry;
 
pair A = (-3, 4);
 
pair B = (-3, 5);
 
pair C = (-1, 4);
 
pair D = (-1, 5);
 
 
 
 
 
pair AA = (0, 0);
 
pair BB = (0, 1);
 
pair CC = (2, 0);
 
pair DD = (2, 1);
 
 
 
 
 
 
 
 
 
draw(D--AA,dashed);
 
 
 
draw(A--B);
 
draw(A--C);
 
draw(B--D);
 
draw(C--D);
 
 
 
draw(A--AA);
 
draw(B--BB);
 
draw(C--CC);
 
draw(D--DD);
 
 
 
// Dotted vertices
 
dot(A); dot(B); dot(C); dot(D);
 
 
 
 
 
 
 
dot(AA); dot(BB); dot(CC); dot(DD);
 
 
 
draw(AA--BB);
 
draw(AA--CC);
 
draw(BB--DD);
 
draw(CC--DD);
 
 
 
 
 
label("a",midpoint(D--DD),E);
 
label("b",midpoint(CC--DD),E);
 
label("c",midpoint(AA--CC),S);
 
</asy>
 
Let <math>a,b,</math> and <math>c</math> be the sides of the box, we get
 
 
 
<cmath>\begin{align*}
 
  4(a+b+c) &= 13\\
 
2(ab+bc+ca) &= \dfrac{11}{2}\\
 
abc &= \dfrac{1}{2}
 
\end{align*}</cmath>
 
 
 
 
 
The longest diagonal of prism will be the space diagonal, which can be found by summing the squares of all the sides and square rooting them.
 
 
 
<cmath>\begin{align*}
 
  \sqrt{a^2+b^2+c^2}&=\sqrt{(a+b+c)^2-2(ab+bc+ca)}\\
 
&=\sqrt{(\dfrac{13}{4})^2-\dfrac{11}{2}}\\
 
&=\sqrt{\dfrac{169}{16}-\dfrac{88}{16}}\\
 
&=\sqrt{\dfrac{81}{16}}\\
 
&=\dfrac{9}{4}
 
\end{align*}
 
</cmath>
 
Note the expansion of <cmath>\begin{align*}
 
& (a+b+c)^2 = a \cdot(a+b+c) + b \cdot(a+b+c) + c\cdot(a+b+c)\\
 
&=\ a^2 + ab + ac+ ab + b^2 + bc+ac+bc+c^2 = \\
 
&=\ a^2+b^2+c^2 + 2ab + 2bc + 2ac)
 
\end{align*}
 
</cmath>
 
~Technodoggo ~minor edits and add-ons by lucaswujc
 
 
 
==Note==
 
Interestingly, we don't use the fact that the volume is <math>\frac{1}{2}</math> ~andliu766
 
 
 
==Solution 2 (find side lengths)==
 
 
 
Let <math>a,b,c</math> be the edge lengths.
 
<math>4(a+b+c)=13, a+b+c=13/4</math>
 
<math>2(ab+bc+ac)=11/2, ab+bc+ac=11/4</math>
 
<math>abc=1/2</math>
 
 
 
Then, you can notice that these look like results of Vieta's formula:
 
<math>(x-a)(x-b)(x-c) = x^3-(a+b+c)x^2+(ab+bc+ac)x-abc = x^3-13/4x^2+11/4x-1/2</math>
 
Finding when this <math>= 0</math> will give us the edge lengths.
 
We can use RRT to find one of the roots:
 
One is <math>x=1</math>, dividing gives <math>x^2-9/4x+1/2</math>.
 
The other 2 roots are <math>2,1/4</math>
 
 
 
Then, once we find the 3 edges being <math>a=1,b=2,</math> and <math>c=1/4</math>, we can plug in to the distance formula to get <math>9/4</math>.
 
 
 
 
 
-HIA2020
 
 
 
==Solution 3 (Cheese Method)==
 
 
 
Incorporating the solution above, the side lengths are larger than <math>1</math> <math>\cdot</math> <math>1</math> <math>\cdot</math> <math>1</math> (a unit cube). The side length of the interior of a unit cube is <math>\sqrt{3}</math>, and we know that the side lengths are larger than <math>1</math> <math>\cdot</math> <math>1</math> <math>\cdot</math> <math>1</math>, so that means the diagonal has to be larger than <math>\sqrt{3}</math>, and the only answer choice larger than <math>\sqrt{3}</math> <math>\Rightarrow</math> <math>\boxed {\textbf{(D) 9/4}}</math> ~ kabbybear
 

Latest revision as of 19:43, 15 November 2023