Difference between revisions of "2023 AMC 12B Problems/Problem 24"
Eunicorn0716 (talk | contribs) (Created page with "Suppose that <math>a,b,c,</math> and <math>d</math> are positive integers satisfying all of the following relations. What is <math>gcd(a,b,c,d)?</math>") |
|||
(3 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | Suppose that <math>a,b,c | + | ==Problem== |
− | What is <math>gcd(a,b,c,d)?</math> | + | Suppose that <math>a</math>, <math>b</math>, <math>c</math> and <math>d</math> are positive integers satisfying all of the following relations. |
+ | |||
+ | <cmath>abcd=2^6\cdot 3^9\cdot 5^7</cmath> | ||
+ | <cmath>\text{lcm}(a,b)=2^3\cdot 3^2\cdot 5^3</cmath> | ||
+ | <cmath>\text{lcm}(a,c)=2^3\cdot 3^3\cdot 5^3</cmath> | ||
+ | <cmath>\text{lcm}(a,d)=2^3\cdot 3^3\cdot 5^3</cmath> | ||
+ | <cmath>\text{lcm}(b,c)=2^1\cdot 3^3\cdot 5^2</cmath> | ||
+ | <cmath>\text{lcm}(b,d)=2^2\cdot 3^3\cdot 5^2</cmath> | ||
+ | <cmath>\text{lcm}(c,d)=2^2\cdot 3^3\cdot 5^2</cmath> | ||
+ | |||
+ | What is <math>\text{gcd}(a,b,c,d)</math>? | ||
+ | |||
+ | <math>\textbf{(A)}~30\qquad\textbf{(B)}~45\qquad\textbf{(C)}~3\qquad\textbf{(D)}~15\qquad\textbf{(E)}~6</math> | ||
+ | |||
+ | ==Solution== | ||
+ | |||
+ | Denote by <math>\nu_p (x)</math> the number of prime factor <math>p</math> in number <math>x</math>. | ||
+ | |||
+ | We index Equations given in this problem from (1) to (7). | ||
+ | |||
+ | |||
+ | First, we compute <math>\nu_2 (x)</math> for <math>x \in \left\{ a, b, c, d \right\}</math>. | ||
+ | |||
+ | Equation (5) implies <math>\max \left\{ \nu_2 (b), \nu_2 (c) \right\} = 1</math>. | ||
+ | Equation (2) implies <math>\max \left\{ \nu_2 (a), \nu_2 (b) \right\} = 3</math>. | ||
+ | Equation (6) implies <math>\max \left\{ \nu_2 (b), \nu_2 (d) \right\} = 2</math>. | ||
+ | Equation (1) implies <math>\nu_2 (a) + \nu_2 (b) + \nu_2 (c) + \nu_2 (d) = 6</math>. | ||
+ | |||
+ | Therefore, all above jointly imply <math>\nu_2 (a) = 3</math>, <math>\nu_2 (d) = 2</math>, and <math>\left( \nu_2 (b), \nu_2 (c) \right) = \left( 0 , 1 \right)</math> or <math>\left( 1, 0 \right)</math>. | ||
+ | |||
+ | |||
+ | Second, we compute <math>\nu_3 (x)</math> for <math>x \in \left\{ a, b, c, d \right\}</math>. | ||
+ | |||
+ | Equation (2) implies <math>\max \left\{ \nu_3 (a), \nu_3 (b) \right\} = 2</math>. | ||
+ | Equation (3) implies <math>\max \left\{ \nu_3 (a), \nu_3 (c) \right\} = 3</math>. | ||
+ | Equation (4) implies <math>\max \left\{ \nu_3 (a), \nu_3 (d) \right\} = 3</math>. | ||
+ | Equation (1) implies <math>\nu_3 (a) + \nu_3 (b) + \nu_3 (c) + \nu_3 (d) = 9</math>. | ||
+ | |||
+ | Therefore, all above jointly imply <math>\nu_3 (c) = 3</math>, <math>\nu_3 (d) = 3</math>, and <math>\left( \nu_3 (a), \nu_3 (b) \right) = \left( 1 , 2 \right)</math> or <math>\left( 2, 1 \right)</math>. | ||
+ | |||
+ | Third, we compute <math>\nu_5 (x)</math> for <math>x \in \left\{ a, b, c, d \right\}</math>. | ||
+ | |||
+ | |||
+ | Equation (5) implies <math>\max \left\{ \nu_5 (b), \nu_5 (c) \right\} = 2</math>. | ||
+ | Equation (2) implies <math>\max \left\{ \nu_5 (a), \nu_5 (b) \right\} = 3</math>. | ||
+ | Thus, <math>\nu_5 (a) = 3</math>. | ||
+ | |||
+ | From Equations (5)-(7), we have either <math>\nu_5 (b) \leq 1</math> and <math>\nu_5 (c) = \nu_5 (d) = 2</math>, or <math>\nu_5 (b) = 2</math> and <math>\max \left\{ \nu_5 (c), \nu_5 (d) \right\} = 2</math>. | ||
+ | |||
+ | Equation (1) implies <math>\nu_5 (a) + \nu_5 (b) + \nu_5 (c) + \nu_5 (d) = 7</math>. | ||
+ | Thus, for <math>\nu_5 (b)</math>, <math>\nu_5 (c)</math>, <math>\nu_5 (d)</math>, there must be two 2s and one 0. | ||
+ | |||
+ | Therefore, | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | {\rm gcd} (a,b,c,d) | ||
+ | & = \Pi_{p \in \{ 2, 3, 5\}} p^{\min\{ \nu_p (a), \nu_p(b) , \nu_p (c), \nu_p(d) \}} \\ | ||
+ | & = 2^0 \cdot 3^1 \cdot 5^0 \\ | ||
+ | & = \boxed{\textbf{(C) 3}}. | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | ~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | ||
+ | |||
+ | ==Video Solution== | ||
+ | |||
+ | https://youtu.be/RtkZTYrpE-w | ||
+ | |||
+ | ~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | ||
+ | |||
+ | ==See Also== | ||
+ | {{AMC12 box|year=2023|ab=B|num-b=23|num-a=25}} | ||
+ | {{MAA Notice}} |
Latest revision as of 01:57, 20 November 2023
Contents
Problem
Suppose that , , and are positive integers satisfying all of the following relations.
What is ?
Solution
Denote by the number of prime factor in number .
We index Equations given in this problem from (1) to (7).
First, we compute for .
Equation (5) implies . Equation (2) implies . Equation (6) implies . Equation (1) implies .
Therefore, all above jointly imply , , and or .
Second, we compute for .
Equation (2) implies . Equation (3) implies . Equation (4) implies . Equation (1) implies .
Therefore, all above jointly imply , , and or .
Third, we compute for .
Equation (5) implies .
Equation (2) implies .
Thus, .
From Equations (5)-(7), we have either and , or and .
Equation (1) implies . Thus, for , , , there must be two 2s and one 0.
Therefore,
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See Also
2023 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.