|
|
(7 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | ==Problem==
| + | #redirect[[2023 AMC 12B Problems/Problem 25]] |
− | A regular pentagon with area 1+\sqrt(5) is printed on paper and cut out. All five vertices are folded to the center of the pentagon, creating a smaller pentagon. What is the area of the new pentagon?
| |
− | | |
− | | |
− | ==Solution 1==
| |
− | | |
− | <asy>
| |
− | unitsize(5cm);
| |
− | | |
− | // Define the vertices of the pentagons
| |
− | pair A, B, C, D, E;
| |
− | pair F, G, H, I, J;
| |
− | | |
− | // Calculate the vertices of the larger pentagon
| |
− | A = dir(90);
| |
− | B = dir(90 - 72);
| |
− | C = dir(90 - 2*72);
| |
− | D = dir(90 - 3*72);
| |
− | E = dir(90 - 4*72);
| |
− | | |
− | // Draw the larger pentagon
| |
− | draw(A--B--C--D--E--cycle);
| |
− | | |
− | pair O = (A+B+C+D+E)/5;
| |
− | pair AA,OO;
| |
− | real gap = 0.02;
| |
− | AA = A+(0,0);
| |
− | OO = O+(0,0);
| |
− | | |
− | draw(AA--OO, blue);
| |
− | | |
− | pair OOO, OAO;
| |
− | OOO = O+(gap,0);
| |
− | OAO = (O+A)/2 + (gap,0);
| |
− | | |
− | draw(OOO--OAO,green);
| |
− | dot(O);
| |
− | dot((O+A)/2);
| |
− | | |
− | label("$r_b$", (O+A)*.7, E,blue);
| |
− | label("$a_s$", (O+A)*.2 +(0+0.18,0.05), E,green);
| |
− | label("$r_s$", O+(-0.175,0.2), E,pink);
| |
− | | |
− | | |
− | real scaleFactor = 1/1.618; // Adjust this value as needed
| |
− | // Rotate the smaller pentagon by 180 degrees
| |
− | F = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 + 180);
| |
− | G = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 72 + 180);
| |
− | H = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 2*72 + 180);
| |
− | I = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 3*72 + 180);
| |
− | J = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 4*72 + 180);
| |
− | | |
− | // Draw the smaller pentagon
| |
− | | |
− | draw(F--G--H--I--J--cycle,red);
| |
− | | |
− | draw(arc(O,(H+I)*.5*.6,H*.6));
| |
− | label("$36^\circ$",O+(+0.05,0.15),NW);
| |
− | draw(O--H,pink);
| |
− | </asy>
| |
− | | |
− | Let <math>r_b</math> and <math>r_s</math> be the circumradius of the big and smaller pentagon. Let <math>a_s</math> be the apothem of the smaller pentagon.
| |
− | | |
− | From the diagram:
| |
− | \cos{36^\circ} &= \dfrac{a_s}{r_s} = \dfrac{\phi}{2} = \dfrac{\sqrt{5}+1}{4}\\
| |
− | a_s &= \dfrac{r_b}{2}\\
| |
− | \text{Area of small pentagon} &= (\dfrac{r_s}{r_b})^2 \text{Area of big pentagon}\\
| |
− | &=(\dfrac{a_s}{\cos{36^\circ} r_b})^2 (1+\sqrt{5})\\
| |
− | &=(\dfrac{r_b}{\dfrac{\phi}{2} r_b})^2 (1+\sqrt{5})\\
| |
− | &=(\dfrac{1}{2 \dfrac{\phi}{2}})^2 (1+\sqrt{5})\\
| |
− | &=(\dfrac{2}{\sqrt{5}+1})^2 (1+\sqrt{5})\\
| |
− | &=\dfrac{4}{\sqrt{5}+1} \\
| |
− | &=\dfrac{4(\sqrt{5}-1)}{(\sqrt{5}+1)(\sqrt{5}-1)} \\
| |
− | &=\sqrt{5}-1
| |
− | | |
− | ~Technodoggo
| |