|
|
(3 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
− | A '''median''' is a measure of central tendency used frequently in statistics.
| + | #REDIRECT [[Median]] |
− | | |
− | == Median of a data set ==
| |
− | The median of a [[finite]] [[set]] of [[real number]]s <math>\{X_1, ..., X_k\}</math> is defined to be <math>X_{(\frac{k+1}2)}</math> when <math>k</math> is odd and <math>\frac{X_{(\frac{k}2)} + X_{(\frac{k}2 + 1)}}2</math> when <math>k</math> is even, where <math>X_{(i)}, i \in \{1,...,k\}</math> denotes the <math>k^{th}</math> [[order statistic]]. For example, the median of the set <math>\{2, 3, 5, 7, 11, 13, 17\}</math> is 7.
| |
− | | |
− | == Median of a distribution ==
| |
− | === Median of a discrete distribution ===
| |
− | | |
− | If <math>F</math> is a [[discrete distribution]], whose [[support]] is a subset of a [[countable]] set <math>{x_1, x_2, x_3, ...}</math>, with <math>x_i < x_{i+1}</math> for all positive integers <math>i</math>, the median of <math>F</math> is said to lie between <math>x_i</math> and <math>x_{i+1}</math> iff <math>F(x_i)\leq\frac12</math> and <math>F(x_{i+1})\geq\frac12</math>. If <math>F(x_i)=\frac12</math> for some <math>i</math>, <math>x_i</math> is defined to be the median of <math>F</math>.
| |
− | | |
− | === Median of a continuous distribution ===
| |
− | | |
− | If <math>F</math> is a [[continuous distribution]], whose support is a subset of the real numbers, the median of <math>F</math> is defined to be the <math>x</math> such that <math>F(x)=\frac12</math>. Clearly, if <math>F</math> has a [[density]] <math>f</math>, this is equivalent to saying <math>\int^x_{-\infty}f = \frac12</math>.
| |
− | | |
− | == Problems ==
| |
− | ===Pre-introductory===
| |
− | Find the median of <math>\{3, 4, 5, 15, 9\}</math>.
| |
− | ===Introductory===
| |
− | ===Intermediate===
| |
− | ===Olympiad===
| |
− | | |
− | {{problems}}
| |