Difference between revisions of "1990 AIME Problems/Problem 5"

m (c)
(Video Solution)
 
(6 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
Let <math>n^{}_{}</math> be the smallest positive [[integer]] that is a multiple of <math>75_{}^{}</math> and has exactly <math>75_{}^{}</math> positive integral divisors, including <math>1_{}^{}</math> and itself. Find <math>n/75^{}_{}</math>.
+
Let <math>n^{}_{}</math> be the smallest positive [[integer]] that is a multiple of <math>75_{}^{}</math> and has exactly <math>75_{}^{}</math> positive integral divisors, including <math>1_{}^{}</math> and itself. Find <math>\frac{n}{75}</math>.
  
 
== Solution ==
 
== Solution ==
The [[prime factorization]] of <math>75 = 3^15^2</math>. Thus, for <math>n</math> to have exactly <math>75</math> integral divisors, we need to have <math>n = a^{x-1}b^{y-1}\ldots</math> such that <math>x \cdot y \cdot \ldots = 75</math>. Since we know that <math>n</math> is [[divisible]] by <math>75</math>, two of the [[prime]] [[factor]]s must be <math>3</math> and <math>5</math>. To minimize <math>n</math>, a third factor which is less than <math>5</math> can be used; the only possible [[prime]] number is <math>2</math>. Also to minimize <math>n</math>, we want <math>5</math>, the greatest of all the factors, to be raised to the least power. Therefore, <math>n = 2^43^45^2</math> and <math>\frac{n}{75} = \frac{2^43^45^2}{3 \cdot 5^2} = 16 \cdot 27 = 432</math>.
+
The [[prime factorization]] of <math>75 = 3^15^2 = (2+1)(4+1)(4+1)</math>. For <math>n</math> to have exactly <math>75</math> integral divisors, we need to have <math>n = p_1^{e_1-1}p_2^{e_2-1}\cdots</math> such that <math>e_1e_2 \cdots = 75</math>. Since <math>75|n</math>, two of the [[prime]] [[factor]]s must be <math>3</math> and <math>5</math>. To minimize <math>n</math>, we can introduce a third prime factor, <math>2</math>. Also to minimize <math>n</math>, we want <math>5</math>, the greatest of all the factors, to be raised to the least power. Therefore, <math>n = 2^43^45^2</math> and <math>\frac{n}{75} = \frac{2^43^45^2}{3 \cdot 5^2} = 16 \cdot 27 = \boxed{432}</math>.
 +
 
 +
== Video Solution by OmegaLearn ==
 +
https://youtu.be/jgyyGeEKhwk?t=588
 +
 
 +
~ pi_is_3.14
 +
 
 +
==Video Solution==
 +
https://www.youtube.com/watch?v=zlFLzuotaMU
  
 
== See also ==
 
== See also ==
Line 9: Line 17:
  
 
[[Category:Intermediate Number Theory Problems]]
 
[[Category:Intermediate Number Theory Problems]]
 +
{{MAA Notice}}

Latest revision as of 02:45, 21 January 2023

Problem

Let $n^{}_{}$ be the smallest positive integer that is a multiple of $75_{}^{}$ and has exactly $75_{}^{}$ positive integral divisors, including $1_{}^{}$ and itself. Find $\frac{n}{75}$.

Solution

The prime factorization of $75 = 3^15^2 = (2+1)(4+1)(4+1)$. For $n$ to have exactly $75$ integral divisors, we need to have $n = p_1^{e_1-1}p_2^{e_2-1}\cdots$ such that $e_1e_2 \cdots = 75$. Since $75|n$, two of the prime factors must be $3$ and $5$. To minimize $n$, we can introduce a third prime factor, $2$. Also to minimize $n$, we want $5$, the greatest of all the factors, to be raised to the least power. Therefore, $n = 2^43^45^2$ and $\frac{n}{75} = \frac{2^43^45^2}{3 \cdot 5^2} = 16 \cdot 27 = \boxed{432}$.

Video Solution by OmegaLearn

https://youtu.be/jgyyGeEKhwk?t=588

~ pi_is_3.14

Video Solution

https://www.youtube.com/watch?v=zlFLzuotaMU

See also

1990 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png