Difference between revisions of "2023 AMC 10A Problems/Problem 17"
(→Solution) |
(→Video Solution by Math-X (First fully understand the problem!!!)) |
||
(37 intermediate revisions by 21 users not shown) | |||
Line 1: | Line 1: | ||
− | + | ==Problem== | |
+ | Let <math>ABCD</math> be a rectangle with <math>AB = 30</math> and <math>BC = 28</math>. Point <math>P</math> and <math>Q</math> lie on <math>\overline{BC}</math> and <math>\overline{CD}</math> respectively so that all sides of <math>\triangle{ABP}, \triangle{PCQ},</math> and <math>\triangle{QDA}</math> have integer lengths. What is the perimeter of <math>\triangle{APQ}</math>? | ||
− | <math>\textbf{(A) } | + | <math>\textbf{(A) } 84 \qquad \textbf{(B) } 86 \qquad \textbf{(C) } 88 \qquad \textbf{(D) } 90 \qquad \textbf{(E) } 92</math> |
− | ==Solution== | + | |
+ | ==Solution 1== | ||
+ | <asy> | ||
+ | /* ~ItsMeNoobieboy */ | ||
+ | size(200); | ||
+ | pair A, B, C, D, P, Q; | ||
+ | A = (0,28/30); | ||
+ | B = (1,28/30); | ||
+ | C = (1,0); | ||
+ | D = (0,0); | ||
+ | P = (1,12/30); | ||
+ | Q = (21/30,0); | ||
+ | draw(A--B--C--D--cycle); | ||
+ | draw(A--P--Q--cycle); | ||
+ | dot("$A$",A,NW,linewidth(4)); | ||
+ | dot("$B$",B,NE,linewidth(4)); | ||
+ | dot("$C$",C,SE,linewidth(4)); | ||
+ | dot("$D$",D,SW,linewidth(4)); | ||
+ | dot("$P$",P,E,linewidth(4)); | ||
+ | dot("$Q$",Q,S,linewidth(4)); | ||
+ | label("$30$",midpoint(A--B),N); | ||
+ | label("$16$",midpoint(B--P),E); | ||
+ | label("$34$",midpoint(A--P),NE, red); | ||
+ | label("$28$",midpoint(A--D),W); | ||
+ | label("$21$",midpoint(D--Q),S); | ||
+ | label("$35$",midpoint(A--Q),SW, red); | ||
+ | label("$9$",midpoint(Q--C),S); | ||
+ | label("$12$",midpoint(C--P),E); | ||
+ | label("$15$",midpoint(Q--P),SE, red); | ||
+ | </asy> | ||
+ | |||
+ | We know that all side lengths are integers, so we can test Pythagorean triples for all triangles. | ||
+ | |||
+ | First, we focus on <math>\triangle{ABP}</math>. The length of <math>AB</math> is <math>30</math>, and the possible (small enough) Pythagorean triples <math>\triangle{ABP}</math> can be are <math>(3, 4, 5), (5, 12, 13), (8, 15, 17),</math> where the length of the longer leg is a factor of <math>30</math>. Testing these, we get that only <math>(8, 15, 17)</math> is a valid solution. Thus, we know that <math>BP = 16</math> and <math>AP = 34</math>. | ||
+ | |||
+ | Next, we move on to <math>\triangle{QDA}</math>. The length of <math>AD</math> is <math>28</math>, and the small enough triples are <math>(3, 4, 5)</math> and <math>(7, 24, 25)</math>. Testing again, we get that <math>(3, 4, 5)</math> is our triple. We get the value of <math>DQ = 21</math>, and <math>AQ = 35</math>. | ||
+ | |||
+ | We know that <math>CQ = CD - DQ</math> which is <math>9</math>, and <math>CP = BC - BP</math> which is <math>12</math>. <math>\triangle{CPQ}</math> is therefore a right triangle with side length ratios <math>{3, 4, 5}</math>, and the hypotenuse is equal to <math>15</math>. | ||
+ | <math>\triangle{APQ}</math> has side lengths <math>34, 35,</math> and <math>15,</math> so the perimeter is equal to <math>34 + 35 + 15 = \boxed{\textbf{(A) } 84}.</math> | ||
+ | |||
+ | ~Gabe Horn ~ItsMeNoobieboy ~oinava | ||
+ | |||
+ | ==Solution 2== | ||
+ | Let <math>BP=y</math> and <math>AP=z</math>. We get <math>30^{2}+y^{2}=z^{2}</math>. Subtracting <math>y^{2}</math> on both sides, we get <math>30^{2}=z^{2}-y^{2}</math>. Factoring, we get <math>30^{2}=(z-y)(z+y)</math>. Since <math>y</math> and <math>z</math> are integers, both <math>z-y</math> and <math>z+y</math> have to be even or both have to be odd. We also have <math>y<31</math>. We can pretty easily see now that <math>z-y=18</math> and <math>z+y=50</math>. Thus, <math>y=16</math> and <math>z=34</math>. We now get <math>CP=12</math>. We do the same trick again. Let <math>DQ=a</math> and <math>AQ=b</math>. Thus, <math>28^{2}=(b+a)(b-a)</math>. We can get <math>b+a=56</math> and <math>b-a=14</math>. Thus, <math>b=35</math> and <math>a=21</math>. We get <math>CQ=9</math> and by the Pythagorean Theorem, we have <math>PQ=15</math>. We get <math>AP+PQ+AQ=34+15+35=84</math>. Our answer is <math>\boxed{\textbf{(A) } 84}.</math> | ||
+ | |||
+ | If you want to see a video solution on this solution, look at Video Solution 1. | ||
+ | |||
+ | -paixiao (minor edits-HW73) | ||
+ | |||
+ | ==Video Solution by Little Fermat== | ||
+ | https://youtu.be/h2Pf2hvF1wE?si=FPZ1D4hdcd1QGUK2&t=3834 | ||
+ | ~little-fermat | ||
+ | ==Video Solution by Math-X (First fully understand the problem!!!)== | ||
+ | https://youtu.be/GP-DYudh5qU?si=KfPIbpJjHwZQTyH4&t=4479 | ||
+ | |||
+ | ~Math-X | ||
+ | |||
+ | ==Video Solution 🚀 2 min solve 🚀== | ||
+ | |||
+ | https://youtu.be/HVMlhdSurPw | ||
+ | |||
+ | <i> ~Education, the Study of Everything </i> | ||
+ | |||
+ | ==Video Solution == | ||
+ | https://www.youtube.com/watch?v=bN7Ly70nw_M | ||
+ | |||
+ | ==Video Solution by OmegaLearn== | ||
+ | https://youtu.be/xlFDMuoOd5Q?si=nCVTriSViqfHA2ju | ||
+ | ==Video Solution== | ||
+ | |||
+ | https://www.youtube.com/watch?v=RiUlGz-p-LU&t=71s | ||
+ | |||
+ | == Video Solution by CosineMethod == | ||
+ | |||
+ | https://www.youtube.com/watch?v=r8Wa8OrKiZI | ||
+ | |||
+ | ==Video Solution 1== | ||
+ | https://www.youtube.com/watch?v=eO_axHSmum4 | ||
+ | |||
+ | -paixiao | ||
+ | |||
+ | ==VIdeo Solution 2== | ||
+ | |||
+ | https://youtu.be/yxfRjwQ8_KM | ||
+ | |||
+ | ~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | ||
+ | |||
+ | ==See Also== | ||
+ | {{AMC10 box|year=2023|ab=A|num-b=16|num-a=18}} | ||
+ | {{MAA Notice}} |
Latest revision as of 06:33, 5 November 2024
Contents
- 1 Problem
- 2 Solution 1
- 3 Solution 2
- 4 Video Solution by Little Fermat
- 5 Video Solution by Math-X (First fully understand the problem!!!)
- 6 Video Solution 🚀 2 min solve 🚀
- 7 Video Solution
- 8 Video Solution by OmegaLearn
- 9 Video Solution
- 10 Video Solution by CosineMethod
- 11 Video Solution 1
- 12 VIdeo Solution 2
- 13 See Also
Problem
Let be a rectangle with and . Point and lie on and respectively so that all sides of and have integer lengths. What is the perimeter of ?
Solution 1
We know that all side lengths are integers, so we can test Pythagorean triples for all triangles.
First, we focus on . The length of is , and the possible (small enough) Pythagorean triples can be are where the length of the longer leg is a factor of . Testing these, we get that only is a valid solution. Thus, we know that and .
Next, we move on to . The length of is , and the small enough triples are and . Testing again, we get that is our triple. We get the value of , and .
We know that which is , and which is . is therefore a right triangle with side length ratios , and the hypotenuse is equal to . has side lengths and so the perimeter is equal to
~Gabe Horn ~ItsMeNoobieboy ~oinava
Solution 2
Let and . We get . Subtracting on both sides, we get . Factoring, we get . Since and are integers, both and have to be even or both have to be odd. We also have . We can pretty easily see now that and . Thus, and . We now get . We do the same trick again. Let and . Thus, . We can get and . Thus, and . We get and by the Pythagorean Theorem, we have . We get . Our answer is
If you want to see a video solution on this solution, look at Video Solution 1.
-paixiao (minor edits-HW73)
Video Solution by Little Fermat
https://youtu.be/h2Pf2hvF1wE?si=FPZ1D4hdcd1QGUK2&t=3834 ~little-fermat
Video Solution by Math-X (First fully understand the problem!!!)
https://youtu.be/GP-DYudh5qU?si=KfPIbpJjHwZQTyH4&t=4479
~Math-X
Video Solution 🚀 2 min solve 🚀
~Education, the Study of Everything
Video Solution
https://www.youtube.com/watch?v=bN7Ly70nw_M
Video Solution by OmegaLearn
https://youtu.be/xlFDMuoOd5Q?si=nCVTriSViqfHA2ju
Video Solution
https://www.youtube.com/watch?v=RiUlGz-p-LU&t=71s
Video Solution by CosineMethod
https://www.youtube.com/watch?v=r8Wa8OrKiZI
Video Solution 1
https://www.youtube.com/watch?v=eO_axHSmum4
-paixiao
VIdeo Solution 2
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See Also
2023 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.