Difference between revisions of "Pell equation"
Jinzhenqian (talk | contribs) (→Family of solutions) |
Eaz shadow (talk | contribs) |
||
Line 7: | Line 7: | ||
Claim: If D is a positive integer that is not a perfect square, then the equation <math>x^2-Dy^2 = 1</math> has a solution in positive integers. | Claim: If D is a positive integer that is not a perfect square, then the equation <math>x^2-Dy^2 = 1</math> has a solution in positive integers. | ||
− | Proof: Let <math>c_{1}</math> be an integer greater than 1. We will show that there exists integers <math>t_{1}</math> and <math>w_{1}</math> such that <math>t_{1}-w_{1}\sqrt{D} < \frac{1}{c_{1}}</math> with <math>w_{1} \le c_{1}</math>. Consider the sequence <math>l_{k} = [k\sqrt{D}+1] \rightarrow 0 \le l_{k}-k\sqrt{d} \le 1</math> <math>\forall</math> <math>0 \le k \le c_{1}</math>. By the | + | Proof: Let <math>c_{1}</math> be an integer greater than 1. We will show that there exists integers <math>t_{1}</math> and <math>w_{1}</math> such that <math>t_{1}-w_{1}\sqrt{D} < \frac{1}{c_{1}}</math> with <math>w_{1} \le c_{1}</math>. Consider the sequence <math>l_{k} = [k\sqrt{D}+1] \rightarrow 0 \le l_{k}-k\sqrt{d} \le 1</math> <math>\forall</math> <math>0 \le k \le c_{1}</math>. By the [[Pigeonhole Principle]] it can be seen that there exists i, j, and p such that i < j, <math>0\le i, j, p, \le c_{1}</math> and |
<math>\frac{p-1}{c_{1}} < l_{i}-i\sqrt{D} \le \frac{p}{c_{1}}, \frac{p-1}{c_{1}} < l_{j}-j\sqrt{D} \le \frac{p}{c_{1}}\rightarrow (l_{j}-l_{i})-(j-i)\sqrt{D} < \frac{1}{c_{1}} \rightarrow t_{1} = l_{j}-l_{i}, w_{1} = j-i</math>. | <math>\frac{p-1}{c_{1}} < l_{i}-i\sqrt{D} \le \frac{p}{c_{1}}, \frac{p-1}{c_{1}} < l_{j}-j\sqrt{D} \le \frac{p}{c_{1}}\rightarrow (l_{j}-l_{i})-(j-i)\sqrt{D} < \frac{1}{c_{1}} \rightarrow t_{1} = l_{j}-l_{i}, w_{1} = j-i</math>. |
Latest revision as of 19:26, 16 November 2024
A Pell equation is a type of diophantine equation in the form for a natural number
. Generally,
is taken to be square-free, since otherwise we can "absorb" the largest square factor
into
by setting
.
Note that if is a perfect square, then this problem can be solved using difference of squares. We would have
, from which we can use casework to quickly determine the solutions.
Alternatively, if D is a nonsquare then there are infinitely many distinct solutions to the pell equation. To prove this it must first be shown that there is a single solution to the pell equation.
Claim: If D is a positive integer that is not a perfect square, then the equation has a solution in positive integers.
Proof: Let be an integer greater than 1. We will show that there exists integers
and
such that
with
. Consider the sequence
. By the Pigeonhole Principle it can be seen that there exists i, j, and p such that i < j,
and
.
So we now have
.
We can now create a sequence of such that
and
which implies
r and s. However we can see by the pigeon hole principle that there is another infinite sequence which will be denoted by
such that
. Once again, from the pigeon hole principle we can see that there exist integers f and g such that
mod H,
mod H, and
. Define
and notice that
. Also note that
mod H which means that Y = 0 mod H also. We can now see that
is a nontrivial solution to pell's equation.
Contents
Family of solutions
Let be the minimal solution to the equation
. Note that if
are solutions to this equation then
which means
is another solution. From this we can guess that
is obtained from
. This does indeed generate all the solutions to this equation. Assume there was another solution
. If
is non-minimal, then there exists some integer
such that
Next, multiply the inequality by to obtain:
.
However, it can be seen that
Meaning is a solution smaller than the minimal solution which is a contradiction.
Therefore, such cannot exist and so the method of composition generates every possible solution to Pell's equation.
For a Pell equation in form of , its roots are in the form of
, in which
and
are the elementery roots of the Pell equation.
Q.E.D.
Continued fractions
The solutions to the Pell equation when is not a perfect square are connected to the continued fraction expansion of
. If
is the period of the continued fraction and
is the
th convergent, all solutions to the Pell equation are in the form
for positive integer
.
Generalization
A Pell-like equation is a diophantine equation of the form , where
is a natural number and
is an integer.
Introductory Problems
Show that if and
are the solutions to the equation
, then
.
Intermediate Problems
- Find the largest integer
satisfying the following conditions:
- (i)
can be expressed as the difference of two consecutive cubes;
- (ii)
is a perfect square. (Source)