Difference between revisions of "User:Gabew"

(Created page with "<asy> import olympiad; size(350); defaultpen(linewidth(0.7)); // define a bunch of arrays and starting points pair[] coord = new pair[65]; int[] trav = {32,16,8,4,2,1}; coord[...")
 
(Blanked the page)
(Tag: Blanking)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
<asy>
+
 
import olympiad;
 
size(350);
 
defaultpen(linewidth(0.7));
 
// define a bunch of arrays and starting points
 
pair[] coord = new pair[65];
 
int[] trav = {32,16,8,4,2,1};
 
coord[0] = (0,73^2); coord[64] = (2*73*70,70^2);
 
// draw the big circles and the bottom line
 
path arc1 = arc(coord[0],coord[0].y,260,360);
 
path arc2 = arc(coord[64],coord[64].y,175,280);
 
fill((coord[0].x-910,coord[0].y)--arc1--cycle,gray(0.75));
 
fill((coord[64].x+870,coord[64].y+425)--arc2--cycle,gray(0.75));
 
draw(arc1^^arc2);
 
draw((-930,0)--(70^2+73^2+850,0));
 
// We now apply the findCenter function 63 times to get
 
// the location of the centers of all 63 constructed circles.
 
// The complicated array setup ensures that all the circles
 
// will be taken in the right order
 
for(int i = 0;i<=5;i=i+1)
 
{
 
int skip = trav[i];
 
for(int k=skip;k<=64 - skip; k = k + 2*skip)
 
{
 
pair cent1 = coord[k-skip], cent2 = coord[k+skip];
 
real r1 = cent1.y, r2 = cent2.y, rn=r1*r2/((sqrt(r1)+sqrt(r2))^2);
 
real shiftx = cent1.x + sqrt(4*r1*rn);
 
coord[k] = (shiftx,rn);
 
}
 
// Draw the remaining 63 circles
 
}
 
for(int i=1;i<=63;i=i+1)
 
{
 
filldraw(circle(coord[i],coord[i].y),gray(0.75));
 
}</asy>
 

Latest revision as of 17:56, 3 September 2023