Difference between revisions of "2023 USAMO Problems/Problem 6"
(Tags: Replaced, Undo) |
Mathisfun286 (talk | contribs) m (→Solution 2) |
||
(10 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | Let ABC be a triangle with incenter <math>I</math> and excenters <math>I_a</math>, <math>I_b</math>, <math>I_c</math> opposite <math>A</math>, <math>B</math>, and <math>C</math>, respectively. Given an arbitrary point <math>D</math> on the circumcircle of <math>\triangle ABC</math> that does not lie on any of the lines <math> | + | Let ABC be a triangle with incenter <math>I</math> and excenters <math>I_a</math>, <math>I_b</math>, <math>I_c</math> opposite <math>A</math>, <math>B</math>, and <math>C</math>, respectively. Given an arbitrary point <math>D</math> on the circumcircle of <math>\triangle ABC</math> that does not lie on any of the lines <math>II_{a}</math>, <math>I_{b}I_{c}</math>, or <math>BC</math>, suppose the circumcircles of <math>\triangle DIIa</math> and <math>\triangle DI_bI_c</math> intersect at two distinct points <math>D</math> and <math>F</math>. If <math>E</math> is the intersection of lines <math>DF</math> and <math>BC</math>, prove that <math>\angle BAD = \angle EAC</math>. |
− | |||
− | |||
+ | == Video Solution by mop 2024 == | ||
+ | https://youtube.com/watch?v=LAuyU2OuVzE | ||
+ | |||
+ | ~r00tsOfUnity | ||
+ | |||
+ | == Solution 1 == | ||
+ | <asy> | ||
+ | size(500); | ||
+ | pair A,B,C,D,E,F,G,H,I,J,K,IA,IB,IC,P,Q; | ||
+ | B=(0,0); | ||
+ | C=(8,0); | ||
+ | A=intersectionpoint(Circle(B,6),Circle(C,9)); | ||
+ | I=incenter(A,B,C); | ||
+ | path c=circumcircle(A,B,C); | ||
+ | J=intersectionpoint(I--(4*I-3*A),c); | ||
+ | IA=2*J-I; | ||
+ | IB=2*intersectionpoint(I--(4*I-3*B),c)-I; | ||
+ | IC=2*intersectionpoint(I--(4*I-3*C),c)-I; | ||
+ | K=intersectionpoint(IB--IC,c); | ||
+ | D=intersectionpoint(I--(I+(10,-12)),c); | ||
+ | path c1=circumcircle(D,I,IA),c2=circumcircle(D,IB,IC); | ||
+ | F=intersectionpoints(c1,c2)[1]; | ||
+ | E=extension(B,C,D,F); | ||
+ | G=intersectionpoint(c1,c); | ||
+ | H=intersectionpoint(c2,c); | ||
+ | P=extension(A,I,B,C); | ||
+ | Q=extension(IB,IC,B,C); | ||
+ | draw(A--B--C--A); | ||
+ | draw(c); | ||
+ | draw(A--J); | ||
+ | draw(circumcircle(D,I,IA)); | ||
+ | draw(circumcircle(D,IB,IC)); | ||
+ | draw(D--F); | ||
+ | draw(B--Q--IB); | ||
+ | draw(G--J,dashed); | ||
+ | draw(H--K,dashed); | ||
+ | dot("$A$",A,dir(A-circumcenter(A,B,C))); | ||
+ | dot("$B$",B,1/2*dir(B-dir(circumcenter(A,B,C))*dir(90)+dir(B-C))); | ||
+ | dot("$C$",C,dir(C-circumcenter(A,B,C))*dir(15)); | ||
+ | dot("$D$",D,dir(dir(90)*dir(circumcenter(D,I,IA)-D)+dir(90)*dir(D-circumcenter(D,IB,IC)))); | ||
+ | dot("$E$",E,dir(dir(H-K)+dir(B-C))); | ||
+ | dot("$F$",F,dir(dir(90)*dir(F-circumcenter(D,I,IA))+dir(90)*dir(circumcenter(D,IB,IC)-F))); | ||
+ | dot("$G$",G,dir(dir(90)*dir(G-circumcenter(D,I,IA))+dir(90)*dir(circumcenter(A,B,C)-G))); | ||
+ | dot("$H$",H,dir(dir(90)*dir(circumcenter(D,IB,IC)-H)+dir(90)*dir(H-circumcenter(A,B,C)))); | ||
+ | dot("$I$",I,dir(dir(90)*dir(circumcenter(D,I,IA)-I)+dir(A-I))); | ||
+ | dot("$J$",J,dir(J-circumcenter(A,B,C))); | ||
+ | dot("$K$",K,dir(K-circumcenter(A,B,C))); | ||
+ | dot("$I_A$",IA,dir(IA-circumcenter(D,I,IA))); | ||
+ | dot("$I_B$",IB,dir(dir(IB-IC)+dir(IB-IA))); | ||
+ | dot("$I_C$",IC,dir(dir(90)*dir(circumcenter(D,IB,IC)-IC)+dir(IC-IB))); | ||
+ | dot("$P$",P,dir(dir(A-I)+dir(C-B))); | ||
+ | dot("$Q$",Q,dir(dir(IC-IB)+dir(B-C))); | ||
+ | </asy> | ||
+ | |||
+ | Consider points <math>G,H,J,K,P,</math> and <math>Q</math> such that the intersections of the circumcircle of <math>\triangle{}ABC</math> with the circumcircle of <math>\triangle{}DII_A</math> are <math>D</math> and <math>G</math>, the intersections of the circumcircle of <math>\triangle{}ABC</math> with the circumcircle of <math>\triangle{}DI_BI_C</math> are <math>D</math> and <math>H</math>, the intersections of the circumcircle of <math>\triangle{}ABC</math> with line <math>\overline{II_A}</math> are <math>A</math> and <math>J</math>, the intersections of the circumcircle of <math>\triangle{}ABC</math> with line <math>\overline{I_BI_C}</math> are <math>A</math> and <math>K</math>, the intersection of lines <math>\overline{II_A}</math> and <math>\overline{BC}</math> is <math>P</math>, and the intersection of lines <math>\overline{I_BI_C}</math> and <math>\overline{BC}</math> is <math>Q</math>. | ||
+ | |||
+ | Since <math>IBI_AC</math> is cyclic, the pairwise radical axes of the circumcircles of <math>\triangle{}DII_A,\triangle{}ABC,</math> and <math>IBI_AC</math> concur. The pairwise radical axes of these circles are <math>\overline{GD},\overline{II_A},</math> and <math>\overline{BC}</math>, so <math>G,P,</math> and <math>D</math> are collinear. Similarly, since <math>BCI_BI_C</math> is cyclic, the pairwise radical axes of the cirucmcircles of <math>\triangle{}DI_BI_C,\triangle{}ABC,</math> and <math>BCI_BI_C</math> concur. The pairwise radical axes of these circles are <math>\overline{HD},\overline{I_BI_C},</math> and <math>\overline{BC}</math>, so <math>H,Q,</math> and <math>D</math> are collinear. This means that <math>-1=(Q,P;B,C)\stackrel{D}{=}(H,G;B,C)</math>, so the tangents to the circumcircle of <math>\triangle{}ABC</math> at <math>G</math> and <math>H</math> intersect on <math>\overline{BC}</math>. Let this intersection be <math>X</math>. Also, let the intersection of the tangents to the circumcircle of <math>\triangle{}ABC</math> at <math>K</math> and <math>J</math> be a point at infinity on <math>\overline{BC}</math> called <math>Y</math> and let the intersection of lines <math>\overline{KG}</math> and <math>\overline{}HJ</math> be <math>Z</math>. Then, let the intersection of lines <math>\overline{GJ}</math> and <math>\overline{HK}</math> be <math>E'</math>. By Pascal's Theorem on <math>GGJHHK</math> and <math>GJJHKK</math>, we get that <math>X,E',</math> and <math>Z</math> are collinear and that <math>E',Y,</math> and <math>Z</math> are collinear, so <math>E',X,</math> and <math>Y</math> are collinear, meaning that <math>E'</math> lies on <math>\overline{BC}</math> since both <math>X</math> and <math>Y</math> lie on <math>\overline{BC}</math>. | ||
+ | |||
+ | <asy> | ||
+ | size(500); | ||
+ | pair A,B,C,D,E,F,G,H,I,J,K,IA,IB,IC,P,Q,GP; | ||
+ | B=(0,0); | ||
+ | C=(8,0); | ||
+ | A=intersectionpoint(Circle(B,6),Circle(C,9)); | ||
+ | I=incenter(A,B,C); | ||
+ | path c=circumcircle(A,B,C); | ||
+ | J=intersectionpoint(I--(4*I-3*A),c); | ||
+ | IA=2*J-I; | ||
+ | IB=2*intersectionpoint(I--(4*I-3*B),c)-I; | ||
+ | IC=2*intersectionpoint(I--(4*I-3*C),c)-I; | ||
+ | K=intersectionpoint(IB--IC,c); | ||
+ | D=intersectionpoint(I--(I+(10,-12)),c); | ||
+ | path c1=circumcircle(D,I,IA),c2=circumcircle(D,IB,IC); | ||
+ | F=intersectionpoints(c1,c2)[1]; | ||
+ | E=extension(B,C,D,F); | ||
+ | G=intersectionpoint(c1,c); | ||
+ | H=intersectionpoint(c2,c); | ||
+ | P=extension(A,I,B,C); | ||
+ | Q=extension(IB,IC,B,C); | ||
+ | GP=extension(A,2*foot(G,A,I)-G,B,C); | ||
+ | draw(A--B--C--A); | ||
+ | draw(c); | ||
+ | draw(A--J--G--D); | ||
+ | draw(C--GP); | ||
+ | draw(circumcircle(A,E,J),dashed); | ||
+ | dot("$A$",A,dir(A-circumcenter(A,B,C))); | ||
+ | dot("$B$",B,dir(B-circumcenter(A,B,C))); | ||
+ | dot("$C$",C,dir(dir(90)*dir(circumcenter(A,B,C)-C)+dir(C-B))); | ||
+ | dot("$D$",D,dir(dir(90)*dir(circumcenter(D,I,IA)-D)+dir(90)*dir(D-circumcenter(D,IB,IC)))); | ||
+ | dot("$E'$",E,dir(dir(J-G)+dir(B-C))); | ||
+ | dot("$G$",G,dir(dir(90)*dir(G-circumcenter(D,I,IA))+dir(90)*dir(circumcenter(A,B,C)-G))); | ||
+ | dot("$I$",I,dir(dir(90)*dir(circumcenter(D,I,IA)-I)+dir(A-I))); | ||
+ | dot("$J$",J,dir(J-circumcenter(A,B,C))); | ||
+ | dot("$P$",P,dir(dir(A-I)+dir(C-B))); | ||
+ | dot("$G'$",GP,dir(GP-B)); | ||
+ | </asy> | ||
+ | |||
+ | Consider the transformation which is the composition of an inversion centered at <math>A</math> and a reflection over the angle bisector of <math>\angle{}CAB</math> that sends <math>B</math> to <math>C</math> and <math>C</math> to <math>B</math>. We claim that this sends <math>D</math> to <math>E'</math> and <math>E'</math> to <math>D</math>. It is sufficient to prove that if the transformation sends <math>G</math> to <math>G'</math>, then <math>AE'JG'</math> is cyclic. Notice that <math>\triangle{}AGB\sim\triangle{}ACG'</math> since <math>\angle{}GAB=\angle{}G'AC</math> and <math>\tfrac{AG'}{AC}=\tfrac{\frac{AB\cdot{}AC}{AG}}{AC}=\tfrac{AB}{AG}</math>. Therefore, we get that <math>\angle{}AG'E'=\angle{}ABG=\angle{}AJE'</math>, so <math>AE'JG'</math> is cyclic, proving the claim. This means that <math>\angle{}BAE'=\angle{}CAD</math>. | ||
+ | |||
+ | <asy> | ||
+ | size(500); | ||
+ | pair A,B,C,D,E,F,G,H,I,J,K,IA,IB,IC,P,Q,GP,BP,CP,DP; | ||
+ | B=(0,0); | ||
+ | C=(8,0); | ||
+ | A=intersectionpoint(Circle(B,6),Circle(C,9)); | ||
+ | I=incenter(A,B,C); | ||
+ | path c=circumcircle(A,B,C); | ||
+ | J=intersectionpoint(I--(4*I-3*A),c); | ||
+ | IA=2*J-I; | ||
+ | IB=2*intersectionpoint(I--(4*I-3*B),c)-I; | ||
+ | IC=2*intersectionpoint(I--(4*I-3*C),c)-I; | ||
+ | K=intersectionpoint(IB--IC,c); | ||
+ | D=intersectionpoint(I--(I+(10,-12)),c); | ||
+ | path c1=circumcircle(D,I,IA),c2=circumcircle(D,IB,IC); | ||
+ | F=intersectionpoints(c1,c2)[1]; | ||
+ | E=extension(B,C,D,F); | ||
+ | G=intersectionpoint(c1,c); | ||
+ | H=intersectionpoint(c2,c); | ||
+ | P=extension(A,I,B,C); | ||
+ | Q=extension(IB,IC,B,C); | ||
+ | BP=2*foot(B,IB,IC)-B; | ||
+ | CP=2*foot(C,IB,IC)-C; | ||
+ | DP=2*foot(D,IB,IC)-D; | ||
+ | draw(A--B--C--A); | ||
+ | draw(E--DP); | ||
+ | draw(BP--A--CP); | ||
+ | draw(IB--IC); | ||
+ | draw(c); | ||
+ | draw(circumcircle(B,IB,IC)); | ||
+ | draw(circumcircle(E,IB,IC)); | ||
+ | dot("$A$",A,2*dir(dir(IB-A)+dir(C-A))); | ||
+ | dot("$B$",B,dir(B-circumcenter(A,B,C))); | ||
+ | dot("$C$",C,dir(dir(90)*dir(circumcenter(A,B,C)-C)+dir(C-B))); | ||
+ | dot("$D$",D,dir(dir(90)*dir(circumcenter(D,I,IA)-D)+dir(90)*dir(D-circumcenter(D,IB,IC)))); | ||
+ | dot("$E'$",E,dir(B-C)*dir(90)); | ||
+ | dot("$I_B$",IB,dir(dir(IB-IC)+dir(IB-IA))); | ||
+ | dot("$I_C$",IC,dir(dir(90)*dir(circumcenter(D,IB,IC)-IC)+dir(IC-IB))); | ||
+ | dot("$B'$",BP,dir(BP-circumcenter(B,IB,IC))); | ||
+ | dot("$C'$",CP,dir(CP-circumcenter(B,IB,IC))); | ||
+ | dot("$D'$",DP,dir(DP-E)); | ||
+ | </asy> | ||
+ | |||
+ | We claim that <math>\angle{}I_BE'I_C+\angle{}I_BDI_C=180^\circ</math>. Construct <math>D'</math> to be the intersection of line <math>\overline{AE'}</math> and the circumcircle of <math>\triangle{}E'I_BI_C</math> and let <math>B'</math> and <math>C'</math> be the intersections of lines <math>\overline{AC}</math> and <math>\overline{AB}</math> with the circumcircle of <math>\triangle{}BI_BI_C</math>. Since <math>B'</math> and <math>C'</math> are the reflections of <math>B</math> and <math>C</math> over <math>\overline{I_BI_C}</math>, it is sufficient to prove that <math>A,B',C',D'</math> are concyclic. Since <math>\overline{B'C},\overline{D'E'},</math> and <math>\overline{I_BI_C}</math> concur and <math>D',E',I_B,I_C</math> and <math>I_B,I_C,B',C</math> are concyclic, we have that <math>B',C,D',E'</math> are concyclic, so <math>\angle{}B'D'A=\angle{}ACE'=\angle{}AC'B'</math>, so <math>A,B',C',D'</math> are concyclic, proving the claim. We can similarly get that <math>\angle{}IE'I_A=\angle{}IDI_A</math>. | ||
+ | |||
+ | <asy> | ||
+ | size(500); | ||
+ | pair A,B,C,D,E,F,G,H,I,J,K,IA,IB,IC,P,Q,JP,KP; | ||
+ | B=(0,0); | ||
+ | C=(8,0); | ||
+ | A=intersectionpoint(Circle(B,6),Circle(C,9)); | ||
+ | I=incenter(A,B,C); | ||
+ | path c=circumcircle(A,B,C); | ||
+ | J=intersectionpoint(I--(4*I-3*A),c); | ||
+ | IA=2*J-I; | ||
+ | IB=2*intersectionpoint(I--(4*I-3*B),c)-I; | ||
+ | IC=2*intersectionpoint(I--(4*I-3*C),c)-I; | ||
+ | K=intersectionpoint(IB--IC,c); | ||
+ | D=intersectionpoint(I--(I+(10,-12)),c); | ||
+ | path c1=circumcircle(D,I,IA),c2=circumcircle(D,IB,IC); | ||
+ | F=intersectionpoints(c1,c2)[1]; | ||
+ | E=extension(B,C,D,F); | ||
+ | G=intersectionpoint(c1,c); | ||
+ | H=intersectionpoint(c2,c); | ||
+ | P=extension(A,I,B,C); | ||
+ | Q=extension(IB,IC,B,C); | ||
+ | JP=2*J-E; | ||
+ | KP=2*K-E; | ||
+ | draw(A--B--C--A); | ||
+ | draw(c); | ||
+ | draw(A--J); | ||
+ | draw(circumcircle(D,I,IA)); | ||
+ | draw(circumcircle(D,IB,IC)); | ||
+ | draw(D--F,dashed); | ||
+ | draw(B--Q--IB); | ||
+ | draw(G--JP); | ||
+ | draw(H--KP); | ||
+ | dot("$A$",A,dir(A-circumcenter(A,B,C))); | ||
+ | dot("$B$",B,1/2*dir(B-dir(circumcenter(A,B,C))*dir(90)+dir(B-C))); | ||
+ | dot("$C$",C,dir(C-circumcenter(A,B,C))*dir(15)); | ||
+ | dot("$D$",D,dir(dir(90)*dir(circumcenter(D,I,IA)-D)+dir(90)*dir(D-circumcenter(D,IB,IC)))); | ||
+ | dot("$E'$",E,dir(dir(H-K)+dir(B-C))); | ||
+ | dot("$F$",F,dir(dir(90)*dir(F-circumcenter(D,I,IA))+dir(90)*dir(circumcenter(D,IB,IC)-F))); | ||
+ | dot("$G$",G,dir(dir(90)*dir(G-circumcenter(D,I,IA))+dir(90)*dir(circumcenter(A,B,C)-G))); | ||
+ | dot("$H$",H,dir(dir(90)*dir(circumcenter(D,IB,IC)-H)+dir(90)*dir(H-circumcenter(A,B,C)))); | ||
+ | dot("$I$",I,dir(dir(90)*dir(circumcenter(D,I,IA)-I)+dir(A-I))); | ||
+ | dot("$J$",J,dir(dir(circumcenter(A,B,C)-J)*dir(90)+dir(J-G))); | ||
+ | dot("$K$",K,dir(dir(K-circumcenter(A,B,C))*dir(90)+dir(K-H))); | ||
+ | dot("$I_A$",IA,dir(IA-circumcenter(D,I,IA))); | ||
+ | dot("$I_B$",IB,dir(dir(IB-IC)+dir(IB-IA))); | ||
+ | dot("$I_C$",IC,dir(dir(90)*dir(circumcenter(D,IB,IC)-IC)+dir(IC-IB))); | ||
+ | dot("$P$",P,dir(dir(A-I)+dir(C-B))); | ||
+ | dot("$Q$",Q,dir(dir(IC-IB)+dir(B-C))); | ||
+ | dot("$J'$",JP,dir(JP-circumcenter(D,I,IA))); | ||
+ | dot("$K'$",KP,dir(KP-circumcenter(D,IB,IC))); | ||
+ | </asy> | ||
+ | |||
+ | Let line <math>\overline{E'J}</math> intersect the circumcircle of <math>\triangle{}DII_A</math> at <math>G</math> and <math>J'</math>. Notice that <math>J</math> is the midpoint of <math>\overline{II_A}</math> and <math>\angle{}IE'I_A=\angle{}IDI_A=\angle{}IJ'I_A</math>, so <math>IE'I_AJ'</math> is a parallelogram with center <math>J</math>, so <math>\tfrac{EJ}{EJ'}=\tfrac{1}{2}</math>. Similarly, we get that if line <math>\overline{E'K}</math> intersects the circumcircle of <math>\triangle{}DI_BI_C</math> at <math>H</math> and <math>K'</math>, we have that <math>\tfrac{EK}{EK'}=\tfrac{1}{2}</math>, so <math>\overline{KJ}\parallel\overline{K'J'}</math>, so <math>\angle{}HGJ'=\angle{}HGJ=\angle{}HKJ=\angle{}HK'J'</math>, so <math>G,H,J',K'</math> are concyclic. Then, the pairwise radical axes of the circumcircles of <math>\triangle{}DII_A,\triangle{}DI_BI_C,</math> and <math>GHJ'K'</math> are <math>\overline{DF},\overline{HK'},</math> and <math>\overline{GJ'}</math>, so <math>\overline{DF},\overline{HK'},</math> and <math>\overline{GJ'}</math> concur, so <math>\overline{DF},\overline{HK},</math> and <math>\overline{GJ}</math> concur, so <math>E=E'</math>. We are then done since <math>\angle{}BAE'=\angle{}CAD</math>. | ||
+ | |||
+ | ~Zhaom | ||
+ | |||
+ | ==Solution 2== | ||
+ | |||
+ | Set <math>\triangle ABC</math> as the reference triangle, and let <math>D=(x_0,y_0,z_0)</math> with homogenized coordinates. To find the equation of circle <math>DII_A</math>, we note that <math>I=(a:b:c)</math> (not homogenized) and <math>I_A=(-a:b:c)</math>. Thus, for this circle with equation <math>a^2yz+b^2xz+c^2xy=(x+y+z)(u_1x+v_1y+w_1z)</math>, we compute that <cmath>u_1=bc,</cmath> <cmath>v_1=\frac{bc^2x_0}{bz_0-cy_0},</cmath> <cmath>w_1=\frac{b^2cx_0}{cy_0-bz_0}.</cmath> | ||
+ | For circle <math>DI_BI_C</math> with equation <math>a^2yz+b^2xz+c^2xy=(x+y+z)(u_2x+v_2y+w_2z)</math>,, we find that <cmath>u_2=-bc,</cmath> <cmath>v_2=\frac{bc^2x_0}{bz_0+cy_0},</cmath> <cmath>w_2=\frac{b^2cx_0}{cy_0+bz_0}.</cmath> | ||
+ | The equation of the radical axis is <math>ux+vy+wz=0</math> with <math>u=u_1-u_2</math>, <math>v=v_1-v_2</math>, and <math>w=w_1-w_2</math>. We want to consider the intersection of this line with line <math>\overline{BC}</math>, so set <math>x=0</math>. The equation reduces to <math>vy+wz=0</math>. We see that <math>v=\frac{2bc^3x_0y_0}{b^2z_0^2-c^2y_0^2}</math> and <math>w=\frac{2b^3cx_0z_0}{c^2y_0^2-b^2z_0^2}</math>, so <cmath>\frac{v}{w}=\frac{b^2z_0}{c^2y_0},</cmath> which is the required condition for <math>\overline{AD}</math> and <math>\overline{AE}</math> to be isogonal. | ||
+ | |||
+ | ~MathIsFun286 | ||
+ | |||
+ | ==See Also== | ||
+ | {{USAMO newbox|year=2023|num-b=5|after=Last Problem}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 22:37, 10 March 2024
Problem
Let ABC be a triangle with incenter and excenters , , opposite , , and , respectively. Given an arbitrary point on the circumcircle of that does not lie on any of the lines , , or , suppose the circumcircles of and intersect at two distinct points and . If is the intersection of lines and , prove that .
Video Solution by mop 2024
https://youtube.com/watch?v=LAuyU2OuVzE
~r00tsOfUnity
Solution 1
Consider points and such that the intersections of the circumcircle of with the circumcircle of are and , the intersections of the circumcircle of with the circumcircle of are and , the intersections of the circumcircle of with line are and , the intersections of the circumcircle of with line are and , the intersection of lines and is , and the intersection of lines and is .
Since is cyclic, the pairwise radical axes of the circumcircles of and concur. The pairwise radical axes of these circles are and , so and are collinear. Similarly, since is cyclic, the pairwise radical axes of the cirucmcircles of and concur. The pairwise radical axes of these circles are and , so and are collinear. This means that , so the tangents to the circumcircle of at and intersect on . Let this intersection be . Also, let the intersection of the tangents to the circumcircle of at and be a point at infinity on called and let the intersection of lines and be . Then, let the intersection of lines and be . By Pascal's Theorem on and , we get that and are collinear and that and are collinear, so and are collinear, meaning that lies on since both and lie on .
Consider the transformation which is the composition of an inversion centered at and a reflection over the angle bisector of that sends to and to . We claim that this sends to and to . It is sufficient to prove that if the transformation sends to , then is cyclic. Notice that since and . Therefore, we get that , so is cyclic, proving the claim. This means that .
We claim that . Construct to be the intersection of line and the circumcircle of and let and be the intersections of lines and with the circumcircle of . Since and are the reflections of and over , it is sufficient to prove that are concyclic. Since and concur and and are concyclic, we have that are concyclic, so , so are concyclic, proving the claim. We can similarly get that .
Let line intersect the circumcircle of at and . Notice that is the midpoint of and , so is a parallelogram with center , so . Similarly, we get that if line intersects the circumcircle of at and , we have that , so , so , so are concyclic. Then, the pairwise radical axes of the circumcircles of and are and , so and concur, so and concur, so . We are then done since .
~Zhaom
Solution 2
Set as the reference triangle, and let with homogenized coordinates. To find the equation of circle , we note that (not homogenized) and . Thus, for this circle with equation , we compute that For circle with equation ,, we find that The equation of the radical axis is with , , and . We want to consider the intersection of this line with line , so set . The equation reduces to . We see that and , so which is the required condition for and to be isogonal.
~MathIsFun286
See Also
2023 USAMO (Problems • Resources) | ||
Preceded by Problem 5 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.