Difference between revisions of "1962 AHSME Problems/Problem 39"
Happypi31415 (talk | contribs) (→Solution) |
(→Solution 2) |
||
Line 18: | Line 18: | ||
Note that the medians split the triangle into 6 triangles of equal area, so <math>\triangle AOB</math> has area equal to <math>\frac{1}{3}</math> of <math>\triangle ABC = \sqrt{15}</math>. Let <math>AB=2s</math>. Using Herons*, we get: | Note that the medians split the triangle into 6 triangles of equal area, so <math>\triangle AOB</math> has area equal to <math>\frac{1}{3}</math> of <math>\triangle ABC = \sqrt{15}</math>. Let <math>AB=2s</math>. Using Herons*, we get: | ||
− | <cmath>15=(3+s)(s-1)(s+1)(3- | + | <cmath>15=(3+s)(s-1)(s+1)(3-s)</cmath> |
<cmath>=(9-s^2)(s^2-1)</cmath> | <cmath>=(9-s^2)(s^2-1)</cmath> | ||
Latest revision as of 16:37, 11 January 2025
Problem
Two medians of a triangle with unequal sides are inches and inches. Its area is square inches. The length of the third median in inches, is:
Solution
By the area formula: Where . Plugging in the numbers: Simplifying and squaring both sides: Now, we can just plug in the answer choices and find that works.
Solution 2
We connect all the medians of the triangle. We know that the ratio of the vertice to orthocenter / median is in a ratio. For convenience, call the orthocenter , and label the triangle such that the median from to is 3 and the median from to is 6. Then, is 4 and is 2. Let us call the portion of the third median that goes from to have length , and and have length . Note that the median from to in is equal to .
Note that the medians split the triangle into 6 triangles of equal area, so has area equal to of . Let . Using Herons*, we get:
We can see that , meaning that is 2 and . We can then use Steward's* to find the length of the median from , since we know the median cuts into segments each of length . We get:
Since the length of the actual median from is equal to , we have that the answer is .
- If anyone has a better method of either finding or the median of from , please feel free to edit
~williamxiao