Difference between revisions of "2018 USAMO Problems/Problem 1"
Champion 25 (talk | contribs) (→Solution) |
|||
(2 intermediate revisions by 2 users not shown) | |||
Line 8: | Line 8: | ||
The last inequality is true by AM-GM. Since all these steps are reversible, the proof is complete. | The last inequality is true by AM-GM. Since all these steps are reversible, the proof is complete. | ||
+ | |||
+ | - It should actually be 4(a)(a+b+c) + 4bc which results in a wrong inequality by AM-GM | ||
+ | |||
+ | Hence, the solution is wrong. | ||
==Solution 2== | ==Solution 2== | ||
Line 18: | Line 22: | ||
WLOG, we can scale down all variables such that the lowest one is <math>1</math>. WLOG, let this be <math>a=1</math>. | WLOG, we can scale down all variables such that the lowest one is <math>1</math>. WLOG, let this be <math>a=1</math>. | ||
− | We now have <math>1+b+c=4\sqrt[3]{bc}</math>, and we want to prove <math>2bc+2b+2c+4\ge 1+b^2+c^2.</math> Adding <math>2bc</math> to both sides and subtracting <math>2b+2c</math> gives us <math>4bc+4\ge 1+ (b+c)(b+c-2)</math>, or <math>4bc+3\ge (b+c)(b+c-2)</math>. Let <math>\sqrt[3]{bc}=x</math>. Now, we have <cmath>4x^3+3 \ge (4x-1)(4x-3)</cmath> <cmath>4x^3 - 16x^2 + 16x \ge 0</cmath> <cmath>4x^2 - 16 + 16 \ge 0</cmath> <cmath>4(x-2)^2 \ge 0</cmath> By the trivial inequality, this is always true, | + | We now have <math>1+b+c=4\sqrt[3]{bc}</math>, and we want to prove <math>2bc+2b+2c+4\ge 1+b^2+c^2.</math> Adding <math>2bc</math> to both sides and subtracting <math>2b+2c</math> gives us <math>4bc+4\ge 1+ (b+c)(b+c-2)</math>, or <math>4bc+3\ge (b+c)(b+c-2)</math>. Let <math>\sqrt[3]{bc}=x</math>. Now, we have <cmath>4x^3+3 \ge (4x-1)(4x-3)</cmath> <cmath>4x^3 - 16x^2 + 16x \ge 0</cmath> <cmath>4x^2 - 16 + 16 \ge 0</cmath> <cmath>4(x-2)^2 \ge 0</cmath> By the trivial inequality, this is always true. Since all these steps are reversible, the proof is complete. |
+ | ~SigmaPiE | ||
+ | |||
+ | {{USAMO newbox|year=2018|before=First Question|num-a=2}} |
Latest revision as of 00:20, 11 January 2025
Contents
Problem 1
Let be positive real numbers such that
. Prove that
Solution
WLOG let . Add
to both sides of the inequality and factor to get:
The last inequality is true by AM-GM. Since all these steps are reversible, the proof is complete.
- It should actually be 4(a)(a+b+c) + 4bc which results in a wrong inequality by AM-GM
Hence, the solution is wrong.
Solution 2
https://wiki-images.artofproblemsolving.com//6/69/IMG_8946.jpg
-srisainandan6
Solution 3
Similarly to Solution 2, we will prove homogeneity but we will use that to solve the problem differently. Let . Note that
, thus proving homogeneity.
WLOG, we can scale down all variables such that the lowest one is . WLOG, let this be
.
We now have
, and we want to prove
Adding
to both sides and subtracting
gives us
, or
. Let
. Now, we have
By the trivial inequality, this is always true. Since all these steps are reversible, the proof is complete.
~SigmaPiE
2018 USAMO (Problems • Resources) | ||
Preceded by First Question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |