Difference between revisions of "2017 AMC 10A Problems/Problem 14"

m (consistent formatting of answer choices)
m (Solution 2)
 
(4 intermediate revisions by the same user not shown)
Line 35: Line 35:
 
Adding, we get <math>\frac{2300}{99}</math>, which is closest to <math>23</math> which is <math>\boxed{\textbf{(D)}\ 23\%}</math>.
 
Adding, we get <math>\frac{2300}{99}</math>, which is closest to <math>23</math> which is <math>\boxed{\textbf{(D)}\ 23\%}</math>.
  
-Harsha12345
+
~Harsha12345
  
==Solution 4==
+
==Solution 3==
 
Let <math>m</math> be the price of a movie ticket and <math>s</math> be the price of a soda.
 
Let <math>m</math> be the price of a movie ticket and <math>s</math> be the price of a soda.
  
Line 49: Line 49:
 
<cmath>20s=A-m</cmath>
 
<cmath>20s=A-m</cmath>
  
Subtracting and getting rid of A, we have <math>20s-5m=-m+s \rightarrow 19s=4m</math>. Assume WLOG that <math>s=4</math>, <math>m=19</math>, thus making a solution for this equation. Substituting this into the 1st equation, we get <math>A=99</math>. Hence, <math>\frac{m+s}{A} = \frac{19+4}{99} \approx \boxed{\textbf{(D)}\ 23\%}</math>
+
Subtracting and getting rid of A, we have <math>20s-5m=-m+s \rightarrow 19s=4m</math>. Assuming WLOG (without loss of generality) that <math>s=4</math>, <math>m=19</math>, thus making a solution for this equation. Substituting this into the 1st equation, we get <math>A=99</math>. Hence, <math>\frac{m+s}{A} = \frac{19+4}{99} \approx \boxed{\textbf{(D)}\ 23\%}</math>
  
 
~MrThinker
 
~MrThinker
==Video Solution==
 
https://youtu.be/s4vnGlwwHHw
 
  
https://youtu.be/zY726PV6XU8
+
==Video Solutions==
 +
i) https://youtu.be/s4vnGlwwHHw
 +
 
 +
ii) https://youtu.be/zY726PV6XU8
  
 
~savannahsolver
 
~savannahsolver

Latest revision as of 02:06, 18 December 2024

Problem

Every week Roger pays for a movie ticket and a soda out of his allowance. Last week, Roger's allowance was $A$ dollars. The cost of his movie ticket was $20\%$ of the difference between $A$ and the cost of his soda, while the cost of his soda was $5\%$ of the difference between $A$ and the cost of his movie ticket. To the nearest whole percent, what fraction of $A$ did Roger pay for his movie ticket and soda?

$\textbf{(A) } 9\%\qquad \textbf{(B) } 19\%\qquad \textbf{(C) } 22\%\qquad \textbf{(D) }  23\%\qquad \textbf{(E) } 25\%$

Solution

Let $m$ = cost of movie ticket
Let $s$ = cost of soda

We can create two equations:

\[m = \frac{1}{5}(A - s)\] \[s  = \frac{1}{20}(A - m)\]

Substituting we get:

\[m = \frac{1}{5}(A - \frac{1}{20}(A - m))\] which yields:
\[m = \frac{19}{99}A\]

Now we can find s and we get:

\[s = \frac{4}{99}A\]

Since we want to find what fraction of $A$ did Roger pay for his movie ticket and soda, we add $m$ and $s$ to get:

\[\frac{19}{99}A + \frac{4}{99}A \implies \boxed{\textbf{(D)}\ 23\%}\]

Solution 2

We have two equations from the problem: $5M=A-S$ and $20S=A-M$ If we replace $A$ with $100$ we get a system of equations, and the sum of the values of $M$ and $S$ is the percentage of $A$. Solving, we get $S=\frac{400}{99}$ and $M=\frac{1900}{99}$. Adding, we get $\frac{2300}{99}$, which is closest to $23$ which is $\boxed{\textbf{(D)}\ 23\%}$.

~Harsha12345

Solution 3

Let $m$ be the price of a movie ticket and $s$ be the price of a soda.

Then,

\[m=\frac{A-s}{5}\] and \[s=\frac{A-m}{20}\] Then, we can turn this into \[5m=A-s\] \[20s=A-m\]

Subtracting and getting rid of A, we have $20s-5m=-m+s \rightarrow 19s=4m$. Assuming WLOG (without loss of generality) that $s=4$, $m=19$, thus making a solution for this equation. Substituting this into the 1st equation, we get $A=99$. Hence, $\frac{m+s}{A} = \frac{19+4}{99} \approx \boxed{\textbf{(D)}\ 23\%}$

~MrThinker

Video Solutions

i) https://youtu.be/s4vnGlwwHHw

ii) https://youtu.be/zY726PV6XU8

~savannahsolver

See Also

2017 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png