Difference between revisions of "2022 SSMO Speed Round Problems/Problem 9"

(Created page with "==Problem== Find the sum of the maximum and minimum values of <math>8x^2+7xy+5y^2</math> under the constraint that <math>3x^2+5xy+3y^2 = 88.</math> ==Solution== We want to m...")
 
(Blanked the page)
(Tag: Blanking)
 
Line 1: Line 1:
==Problem==
 
Find the sum of the maximum and minimum values of <math>8x^2+7xy+5y^2</math> under the constraint that <math>3x^2+5xy+3y^2 = 88.</math>
 
  
==Solution==
 
We want to maximize <math>k</math> such
 
<cmath>
 
    8x^2+7xy+5y^2 = \frac{k}{88}(3x^2+5xy+3y^2)
 
</cmath>
 
or, if <math>a = \frac{x}{y}</math>
 
<cmath>
 
    8a^2+7a+5 = \frac{k}{88}(3a^2+5a+3)
 
</cmath>
 
which has discriminant in <math>a</math> of
 
<cmath>
 
    121(-k^2 + 688k - 78144)
 
</cmath>
 
so the sum of the extremes of <math>k</math> are <math>\boxed{688}</math>.
 

Latest revision as of 13:18, 3 July 2023