Difference between revisions of "1989 AIME Problems/Problem 12"

m (Problem)
 
(7 intermediate revisions by 7 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
Let <math>ABCD^{}_{}</math> be a tetrahedron with <math>AB=41^{}_{}</math>, <math>AC=7^{}_{}</math>, <math>AD=18^{}_{}</math>, <math>BC=36^{}_{}</math>, <math>BD=27^{}_{}</math>, and <math>CD=13^{}_{}</math>, as shown in the figure. Let <math>d^{}_{}</math> be the distance between the midpoints of edges <math>AB^{}_{}</math> and <math>CD^{}_{}</math>. Find <math>d^{2}_{}</math>.
+
Let <math>ABCD</math> be a [[tetrahedron]] with <math>AB=41</math>, <math>AC=7</math>, <math>AD=18</math>, <math>BC=36</math>, <math>BD=27</math>, and <math>CD=13</math>, as shown in the figure. Let <math>d</math> be the distance between the [[midpoint]]s of [[edge]]s <math>AB</math> and <math>CD</math>. Find <math>d^{2}</math>.
 
+
<asy>
[[Image:AIME_1989_Problem_12.png]]
+
defaultpen(fontsize(10)+0.8); size(175);
 +
pair A,B,C,D,M,P,Q;
 +
C=origin; B=(8,0); D=IP(CR(C,6.5),CR(B,8)); A=(4,-3); P=midpoint(A--B); Q=midpoint(C--D);
 +
draw(B--C--D--B--A--C^^A--D); draw(D--P--C^^P--Q, gray+dashed+0.5);
 +
pen p=fontsize(12)+linewidth(3);
 +
dot("$A$",A,down,p); dot("$B$",B,right,p); dot("$C$",C,left,p); dot("$D$",D,up,p); dot("$M$",P,dir(-45),p); dot("$N$",Q,0.2*(Q-P),p);
 +
label("$27$",B--D,2*dir(30),fontsize(10)); label("$7$",A--C,2*dir(210),fontsize(10)); label("$18$",A--D,1.5*dir(30),fontsize(10)); label("$36$",(3,0),up,fontsize(10));
 +
</asy>
  
 
== Solution ==
 
== Solution ==
Call the midpoint of AB M and the midpoint of CD N. d is the median of triangle <math>\triangle CDM</math>. The formula for the length of a median is <math>m=\sqrt{\frac{2a^2+2b^2-c^2}{4}}</math>, where a, b, and c are the side lengths of triangle, and c is the side that is bisected by median m.
+
Call the midpoint of <math>\overline{AB}</math> <math>M</math> and the midpoint of <math>\overline{CD}</math> <math>N</math>. <math>d</math> is the [[median]] of triangle <math>\triangle CDM</math>. The formula for the length of a median is <math>m=\sqrt{\frac{2a^2+2b^2-c^2}{4}}</math>, where <math>a</math>, <math>b</math>, and <math>c</math> are the side lengths of triangle, and <math>c</math> is the side that is bisected by median <math>m</math>. The formula is a direct result of the [[Law of Cosines]] applied twice with the angles formed by the median ([[Stewart's Theorem]]). We can also get this formula from the parallelogram law, that the sum of the squares of the diagonals is equal to the squares of the sides of a parallelogram (https://en.wikipedia.org/wiki/Parallelogram_law).
 
 
We first find CM, which is the median of <math>\triangle CAB</math>.
 
 
 
<math>CM=\sqrt{\frac{98+2592-1681}{4}}=\frac{\sqrt{1009}}{2}</math>
 
  
Now we must find DM, which is the median of <math>\triangle DAB</math>.
+
We first find <math>CM</math>, which is the median of <math>\triangle CAB</math>.
  
<math>DM=\frac{\sqrt{425}}{2}</math>
+
<cmath>CM=\sqrt{\frac{98+2592-1681}{4}}=\frac{\sqrt{1009}}{2}</cmath>
  
Now that we know the sides of <math>\triangle CDM</math>, we proceed to find the length of d.
+
Now we must find <math>DM</math>, which is the median of <math>\triangle DAB</math>.
  
<math>d=\frac{\sqrt{548}}{2}</math>
+
<cmath>DM=\frac{\sqrt{425}}{2}</cmath>
  
<math>d^2=\frac{548}{4}=\boxed{137}</math>
+
Now that we know the sides of <math>\triangle CDM</math>, we proceed to find the length of <math>d</math>.
  
 +
<cmath>d=\frac{\sqrt{548}}{2} \Longrightarrow d^2=\frac{548}{4}=\boxed{137}</cmath>
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=1989|num-b=11|num-a=13}}
 
{{AIME box|year=1989|num-b=11|num-a=13}}
 +
 +
[[Category:Intermediate Geometry Problems]]
 +
{{MAA Notice}}

Latest revision as of 12:49, 1 August 2022

Problem

Let $ABCD$ be a tetrahedron with $AB=41$, $AC=7$, $AD=18$, $BC=36$, $BD=27$, and $CD=13$, as shown in the figure. Let $d$ be the distance between the midpoints of edges $AB$ and $CD$. Find $d^{2}$. [asy] defaultpen(fontsize(10)+0.8); size(175); pair A,B,C,D,M,P,Q; C=origin; B=(8,0); D=IP(CR(C,6.5),CR(B,8)); A=(4,-3); P=midpoint(A--B); Q=midpoint(C--D); draw(B--C--D--B--A--C^^A--D); draw(D--P--C^^P--Q, gray+dashed+0.5); pen p=fontsize(12)+linewidth(3); dot("$A$",A,down,p); dot("$B$",B,right,p); dot("$C$",C,left,p); dot("$D$",D,up,p); dot("$M$",P,dir(-45),p); dot("$N$",Q,0.2*(Q-P),p); label("$27$",B--D,2*dir(30),fontsize(10)); label("$7$",A--C,2*dir(210),fontsize(10)); label("$18$",A--D,1.5*dir(30),fontsize(10)); label("$36$",(3,0),up,fontsize(10)); [/asy]

Solution

Call the midpoint of $\overline{AB}$ $M$ and the midpoint of $\overline{CD}$ $N$. $d$ is the median of triangle $\triangle CDM$. The formula for the length of a median is $m=\sqrt{\frac{2a^2+2b^2-c^2}{4}}$, where $a$, $b$, and $c$ are the side lengths of triangle, and $c$ is the side that is bisected by median $m$. The formula is a direct result of the Law of Cosines applied twice with the angles formed by the median (Stewart's Theorem). We can also get this formula from the parallelogram law, that the sum of the squares of the diagonals is equal to the squares of the sides of a parallelogram (https://en.wikipedia.org/wiki/Parallelogram_law).

We first find $CM$, which is the median of $\triangle CAB$.

\[CM=\sqrt{\frac{98+2592-1681}{4}}=\frac{\sqrt{1009}}{2}\]

Now we must find $DM$, which is the median of $\triangle DAB$.

\[DM=\frac{\sqrt{425}}{2}\]

Now that we know the sides of $\triangle CDM$, we proceed to find the length of $d$.

\[d=\frac{\sqrt{548}}{2} \Longrightarrow d^2=\frac{548}{4}=\boxed{137}\]

See also

1989 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png