Difference between revisions of "2019 AMC 10B Problems/Problem 16"
Magnetoninja (talk | contribs) (→Solution 5) |
(→Diagram) |
||
(13 intermediate revisions by 2 users not shown) | |||
Line 22: | Line 22: | ||
label ("$D$", (2.5,3),NE); | label ("$D$", (2.5,3),NE); | ||
</asy> | </asy> | ||
− | ~ | + | ~Little Mouse (Diagram) |
− | + | ~On da train to math(Edits) | |
− | ==Solution 1== | + | ~Lvluo (Edits) |
+ | |||
+ | ==Solutions== | ||
+ | ===Solution 1=== | ||
Without loss of generality, let <math>AC = CD = 4</math> and <math>DE = EB = 3</math>. Let <math>\angle A = \alpha</math> and <math>\angle B = \beta = 90^{\circ} - \alpha</math>. As <math>\triangle ACD</math> and <math>\triangle DEB</math> are isosceles, <math>\angle ADC = \alpha</math> and <math>\angle BDE = \beta</math>. Then <math>\angle CDE = 180^{\circ} - \alpha - \beta = 90^{\circ}</math>, so <math>\triangle CDE</math> is a <math>3-4-5</math> triangle with <math>CE = 5</math>. | Without loss of generality, let <math>AC = CD = 4</math> and <math>DE = EB = 3</math>. Let <math>\angle A = \alpha</math> and <math>\angle B = \beta = 90^{\circ} - \alpha</math>. As <math>\triangle ACD</math> and <math>\triangle DEB</math> are isosceles, <math>\angle ADC = \alpha</math> and <math>\angle BDE = \beta</math>. Then <math>\angle CDE = 180^{\circ} - \alpha - \beta = 90^{\circ}</math>, so <math>\triangle CDE</math> is a <math>3-4-5</math> triangle with <math>CE = 5</math>. | ||
Then <math>CB = 5+3 = 8</math>, and <math>\triangle ABC</math> is a <math>1-2-\sqrt{5}</math> triangle. | Then <math>CB = 5+3 = 8</math>, and <math>\triangle ABC</math> is a <math>1-2-\sqrt{5}</math> triangle. | ||
− | In isosceles triangles <math>\triangle ACD</math> and <math>\triangle DEB</math>, drop altitudes from <math>C</math> and <math>E</math> onto <math>AB</math>; denote the feet of these altitudes by <math>P_C</math> and <math>P_E</math> respectively. Then <math>\triangle ACP_C \sim \triangle ABC</math> by AAA similarity, so we get that <math>AP_C = P_CD = \frac{4}{\sqrt{5}}</math>, and <math>AD = 2 \times \frac{4}{\sqrt{5}}</math>. Similarly we get <math>BD = 2 \times \frac{6}{\sqrt{5}}</math>, and <math>AD:DB = \boxed{\textbf{(A) } 2:3}</math>. | + | In isosceles triangles <math>\triangle ACD</math> and <math>\triangle DEB</math>, drop altitudes from <math>C</math> and <math>E</math> onto <math>AB</math>; denote the feet of these altitudes by <math>P_C</math> and <math>P_E</math> respectively. Then <math>\triangle ACP_C \sim \triangle ABC</math> by AAA similarity, so we get that <math>AP_C = P_CD = \frac{4}{\sqrt{5}}</math>, and <math>AD = 2 \times \frac{4}{\sqrt{5}}</math>. Similarly, we get <math>BD = 2 \times \frac{6}{\sqrt{5}}</math>, and <math>AD:DB = \boxed{\textbf{(A) } 2:3}</math>. |
− | + | ===Solution 2=== | |
− | |||
− | |||
− | ==Solution 2== | ||
Let <math>AC=CD=4x</math>, and <math>DE=EB=3x</math>. (For this solution, <math>A</math> is above <math>C</math>, and <math>B</math> is to the right of <math>C</math>). Also let <math>\angle A = t^{\circ}</math>, so <math>\angle ACD = \left(180-2t\right)^{\circ}</math>, which implies <math>\angle DCB = \left(2t - 90\right)^{\circ}</math>. Similarly, <math>\angle B = \left(90-t\right)^{\circ}</math>, which implies <math>\angle BED = 2t^{\circ}</math>. This further implies that <math>\angle DEC = \left(180 - 2t\right)^{\circ}</math>. | Let <math>AC=CD=4x</math>, and <math>DE=EB=3x</math>. (For this solution, <math>A</math> is above <math>C</math>, and <math>B</math> is to the right of <math>C</math>). Also let <math>\angle A = t^{\circ}</math>, so <math>\angle ACD = \left(180-2t\right)^{\circ}</math>, which implies <math>\angle DCB = \left(2t - 90\right)^{\circ}</math>. Similarly, <math>\angle B = \left(90-t\right)^{\circ}</math>, which implies <math>\angle BED = 2t^{\circ}</math>. This further implies that <math>\angle DEC = \left(180 - 2t\right)^{\circ}</math>. | ||
Line 41: | Line 41: | ||
By the Law of Cosines in <math>\triangle BED</math>, if <math>BD = d</math>, we have <cmath>\begin{split}&d^2 = (3x)^2+(3x)^2-2\cdot\frac{-3}{5}(3x)(3x) \\ \Rightarrow \ &d^2 = 18x^2 + \frac{54x^2}{5} = \frac{144x^2}{5} \\ \Rightarrow \ &d = \frac{12x}{\sqrt{5}}\end{split}</cmath> Now <math>AD = AB - BD = 4x\sqrt{5} - \frac{12x}{\sqrt{5}} = \frac{8x}{\sqrt{5}}</math>. Thus the answer is <math>\frac{\left(\frac{8x}{\sqrt{5}}\right)}{\left(\frac{12x}{\sqrt{5}}\right)} = \frac{8}{12} = \boxed{\textbf{(A) }2:3}</math>. | By the Law of Cosines in <math>\triangle BED</math>, if <math>BD = d</math>, we have <cmath>\begin{split}&d^2 = (3x)^2+(3x)^2-2\cdot\frac{-3}{5}(3x)(3x) \\ \Rightarrow \ &d^2 = 18x^2 + \frac{54x^2}{5} = \frac{144x^2}{5} \\ \Rightarrow \ &d = \frac{12x}{\sqrt{5}}\end{split}</cmath> Now <math>AD = AB - BD = 4x\sqrt{5} - \frac{12x}{\sqrt{5}} = \frac{8x}{\sqrt{5}}</math>. Thus the answer is <math>\frac{\left(\frac{8x}{\sqrt{5}}\right)}{\left(\frac{12x}{\sqrt{5}}\right)} = \frac{8}{12} = \boxed{\textbf{(A) }2:3}</math>. | ||
− | ==Solution 3== | + | ===Solution 3=== |
WLOG, let <math>AC=CD=4</math>, and <math>DE=EB=3</math>. <math>\angle CDE = 180^{\circ} - \angle ADC - \angle BDE = 180^{\circ} - \angle DAC - \angle DBE = 90^{\circ}</math>. Because of this, <math>\triangle DEC</math> is a 3-4-5 right triangle. Draw the altitude <math>DF</math> of <math>\triangle DEC</math>. <math>DF</math> is <math>\frac{12}{5}</math> by the base-height triangle area formula. <math>\triangle ABC</math> is similar to <math>\triangle DBF</math> (AA). So <math>\frac{DF}{AC} = \frac{BD}{AB} = \frac35</math>. <math>DB</math> is <math>\frac35</math> of <math>AB</math>. Therefore, <math>AD:DB</math> is <math>\boxed{\textbf{(A) } 2:3}</math>. | WLOG, let <math>AC=CD=4</math>, and <math>DE=EB=3</math>. <math>\angle CDE = 180^{\circ} - \angle ADC - \angle BDE = 180^{\circ} - \angle DAC - \angle DBE = 90^{\circ}</math>. Because of this, <math>\triangle DEC</math> is a 3-4-5 right triangle. Draw the altitude <math>DF</math> of <math>\triangle DEC</math>. <math>DF</math> is <math>\frac{12}{5}</math> by the base-height triangle area formula. <math>\triangle ABC</math> is similar to <math>\triangle DBF</math> (AA). So <math>\frac{DF}{AC} = \frac{BD}{AB} = \frac35</math>. <math>DB</math> is <math>\frac35</math> of <math>AB</math>. Therefore, <math>AD:DB</math> is <math>\boxed{\textbf{(A) } 2:3}</math>. | ||
~Thegreatboy90 | ~Thegreatboy90 | ||
+ | ===Solution 4 (a bit long)=== | ||
+ | WLOG, <math>AC = CD = 4</math> and <math>DE = EB = 3</math>. Notice that in <math>\triangle ACB</math>, we have <math>m\angle BAC + m\angle ABC = 90^{\circ}</math>. Since <math>AC = CD</math> and <math>DE = EB</math>, we find that <math>m\angle DAC = m\angle ADC</math> and <math>m\angle DBE = m\angle BDE</math>, so <math>m\angle ADC + m\angle BDE = 90^{\circ}</math> and <math>\angle EDC</math> is right. Therefore, <math>CE = 5</math> by 3-4-5 triangle, <math>CB = 8</math> and <math>AB = 4\sqrt{5}</math>. Define point F such that <math>CF</math> is an altitude; we know the area of the whole triangle is <math>16</math> and we know the hypotenuse is <math>4\sqrt{5}</math>, so <math>CF = \frac{16}{4\sqrt{5}}\cdot2=\frac{8}{\sqrt{5}}</math>. By the geometric mean theorem, <math>x\left(4\sqrt{5}-x\right)=4\sqrt{5}x-x^{2}=\left(\frac{8}{\sqrt{5}}\right)^{2}=\frac{64}{5}</math>. Solving the quadratic we get <math>x=\frac{10\sqrt{5}\pm6\sqrt{5}}{5}</math>, so <math>x=\frac{4\sqrt{5}}{5} or \frac{16\sqrt{5}}{5}</math>. For now, assume <math>x=\frac{4\sqrt{5}}{5}</math>. Then <math>FB=4\sqrt{5}-\frac{4\sqrt{5}}{5}=\frac{16\sqrt{5}}{5}</math>. <math>CF</math> splits <math>AD</math> into two parts (quick congruence by Leg-Angle) so <math>FD = AF = \frac{4\sqrt{5}}{5}</math> and <math>DB = FB - FD = \frac{16\sqrt{5}}{5}-\frac{4\sqrt{5}}{5}=\frac{12\sqrt{5}}{5}</math>. <math>AD = 2\cdot\frac{4\sqrt{5}}{5}=\frac{8\sqrt{5}}{5}</math>. Now we know <math>AD</math> and <math>DB</math>, we can find <math>\frac{AD}{DB}=\frac{\frac{8\sqrt{5}}{5}}{\frac{12\sqrt{5}}{5}}=\frac{8\sqrt{5}}{5}\cdot\frac{5}{12\sqrt{5}}=\frac{8}{12}=\frac{2}{3}</math> or <math>\boxed{\textbf{(A) } 2:3}</math>. | ||
− | ==Solution | + | ===Solution 5 (Short with Trig)=== |
− | |||
− | == | + | Let <math>\angle B=\theta_1</math>, then <math>\angle A=90-\theta_1</math>. Since <math>AC=AD</math>, <math>\angle ADC=90-\theta_1</math>. Similarly, <math>\angle BDE=\theta_1</math>. Then, <math>\angle EDC=180-\theta_1-(90-\theta_1)=90</math>. Therefore <math>\bigtriangleup CDE</math> is right. Let <math>AC=CD=4</math> and <math>DE=EB=3</math>, then <math>EC=5</math>. Let <math>\angle DEC=\angle ACD=\theta_2</math>. We know that <math>\cos \theta_2=\frac{3}{5}</math> so we can apply the Law of Cosines on <math>\bigtriangleup ACD</math> to find <math>AD=\sqrt{32-32\cdot{\frac{3}{5}}}=\sqrt{\frac{2}{5}\cdot{32}} \Longrightarrow \frac{8}{\sqrt{5}}</math>. Doing Pythagorean for <math>BA</math>, we get <math>4\sqrt{5}</math>. Then, <math>BD=4\sqrt{5}-\frac{8}{\sqrt{5}} \Longrightarrow \frac{12}{\sqrt{5}}</math> so the requested ratio is <math>8:12=\boxed{\textbf{(A) } 2:3}</math>. |
− | + | ~[https://artofproblemsolving.com/wiki/index.php/User:Magnetoninja Magnetoninja] | |
− | ==Video Solution | + | ==Video Solution by TheBeautyofMath== |
https://youtu.be/_0YaCyxiMBo | https://youtu.be/_0YaCyxiMBo | ||
Latest revision as of 15:46, 2 November 2024
Contents
Problem
In with a right angle at , point lies in the interior of and point lies in the interior of so that and the ratio . What is the ratio
Diagram
~Little Mouse (Diagram) ~On da train to math(Edits) ~Lvluo (Edits)
Solutions
Solution 1
Without loss of generality, let and . Let and . As and are isosceles, and . Then , so is a triangle with .
Then , and is a triangle.
In isosceles triangles and , drop altitudes from and onto ; denote the feet of these altitudes by and respectively. Then by AAA similarity, so we get that , and . Similarly, we get , and .
Solution 2
Let , and . (For this solution, is above , and is to the right of ). Also let , so , which implies . Similarly, , which implies . This further implies that .
Now we see that . Thus is a right triangle, with side lengths of , , and (by the Pythagorean Theorem, or simply the Pythagorean triple ). Therefore (by definition), , and . Hence (by the double angle formula), giving .
By the Law of Cosines in , if , we have Now . Thus the answer is .
Solution 3
WLOG, let , and . . Because of this, is a 3-4-5 right triangle. Draw the altitude of . is by the base-height triangle area formula. is similar to (AA). So . is of . Therefore, is .
~Thegreatboy90
Solution 4 (a bit long)
WLOG, and . Notice that in , we have . Since and , we find that and , so and is right. Therefore, by 3-4-5 triangle, and . Define point F such that is an altitude; we know the area of the whole triangle is and we know the hypotenuse is , so . By the geometric mean theorem, . Solving the quadratic we get , so . For now, assume . Then . splits into two parts (quick congruence by Leg-Angle) so and . . Now we know and , we can find or .
Solution 5 (Short with Trig)
Let , then . Since , . Similarly, . Then, . Therefore is right. Let and , then . Let . We know that so we can apply the Law of Cosines on to find . Doing Pythagorean for , we get . Then, so the requested ratio is .
Video Solution by TheBeautyofMath
~IceMatrix
Video Solution by OmegaLearn
https://youtu.be/4_x1sgcQCp4?t=4245
~ pi_is_3.14
See Also
2019 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 15 |
Followed by Problem 17 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.