Difference between revisions of "Lucas' Theorem"
m (→Proof) |
(→Proof) |
||
(12 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
− | + | '''Lucas' Theorem''' states that for any [[prime]] <math>p</math> and any [[positive integer]]s <math>n\geq i</math>, if <math>(\overline{n_mn_{m-1}\cdots n_0})_p</math> is the representation of <math>n</math> in [[base]] <math>p</math> and <math>(\overline{i_mi_{m-1}\cdots i_0})_p</math> is the representation of <math>i</math> in base <math>p</math> (possibly with some leading <math>0</math>s) then <math>\binom{n}{i}\equiv \prod_{j=0}^{m}\binom{n_j}{i_j}\pmod{p}</math>. | |
− | + | == Lemma == | |
− | |||
For <math>p</math> prime and <math>x,r\in\mathbb{Z}</math>, | For <math>p</math> prime and <math>x,r\in\mathbb{Z}</math>, | ||
− | < | + | <center><math>(1+x)^{p^r}\equiv 1+x^{p^r}\pmod{p}</math></center> |
=== Proof === | === Proof === | ||
− | For all <math>1\leq k \leq p-1</math>, <math>\binom{p}{k}\equiv 0 \pmod{p}</math>. Then we have | + | For all <math>1\leq k \leq p-1</math>, <math>\binom{p}{k}\equiv 0 \pmod{p}</math>. Then we have |
− | &\equiv& 1+x^p\pmod{p}\end{eqnarray*}</ | + | <cmath>\begin{eqnarray*}(1+x)^p&\equiv &\binom{p}{0}+\binom{p}{1}x+\binom{p}{2}x^2+\cdots+\binom{p}{p-1}x^{p-1}+\binom{p}{p}x^p\\ |
+ | &\equiv& 1+x^p\pmod{p}\end{eqnarray*}</cmath> | ||
+ | Assume we have <math>(1+x)^{p^k}\equiv 1+x^{p^k}\pmod{p}</math>. Then | ||
+ | <cmath>\begin{eqnarray*}(1+x)^{p^{k+1}} | ||
&\equiv&\left((1+x)^{p^k}\right)^p\\ | &\equiv&\left((1+x)^{p^k}\right)^p\\ | ||
&\equiv&\left(1+x^{p^k}\right)^p\\ | &\equiv&\left(1+x^{p^k}\right)^p\\ | ||
&\equiv&\binom{p}{0}+\binom{p}{1}x^{p^k}+\binom{p}{2}x^{2p^k}+\cdots+\binom{p}{p-1}x^{(p-1)p^k}+\binom{p}{p}x^{p^{k+1}}\\ | &\equiv&\binom{p}{0}+\binom{p}{1}x^{p^k}+\binom{p}{2}x^{2p^k}+\cdots+\binom{p}{p-1}x^{(p-1)p^k}+\binom{p}{p}x^{p^{k+1}}\\ | ||
− | &\equiv&1+x^{p^{k+1}}\pmod{p}\end{eqnarray*}</ | + | &\equiv&1+x^{p^{k+1}}\pmod{p}\end{eqnarray*}</cmath> |
− | |||
− | |||
== See also == | == See also == | ||
− | |||
* [[Combinatorics]] | * [[Combinatorics]] | ||
* [[Generating function]] | * [[Generating function]] | ||
+ | * [[Binomial Theorem]] | ||
+ | |||
+ | [[Category:Theorems]] | ||
+ | [[Category:Number theory]] |
Latest revision as of 14:13, 11 August 2020
Lucas' Theorem states that for any prime and any positive integers , if is the representation of in base and is the representation of in base (possibly with some leading s) then .
Lemma
For prime and ,
Proof
For all , . Then we have Assume we have . Then