Difference between revisions of "2022 AMC 10B Problems/Problem 6"

(Solution 4 (Educated Guess))
(Solution 4 (Educated Guess))
 
(3 intermediate revisions by 3 users not shown)
Line 55: Line 55:
 
==Solution 4 (Educated Guess)==
 
==Solution 4 (Educated Guess)==
  
Note that <math>121</math> is divisible by <math>11</math> and <math>11211</math> is divisible by <math>3</math>. Because this problem 6 of the AMC 10, we assume we do not need to check two-digit prime divisibility or use obscure theorems. Therefore, the answer is <math>\boxed{\textbf{(A) } 0}.</math>
+
Note that <math>121</math> is divisible by <math>11</math> and <math>11211</math> is divisible by <math>3</math>. Because this is Problem 6 of the AMC 10, we assume we do not need to check two-digit prime divisibility or use obscure theorems. Therefore, the answer is <math>\boxed{\textbf{(A) } 0}.</math>
  
 
~Dhillonr25
 
~Dhillonr25
Line 63: Line 63:
  
 
~~Hayabusa1
 
~~Hayabusa1
 +
 +
==Video Solution by Interstigation==
 +
https://youtu.be/_KNR0JV5rdI?t=562
 +
 +
==Video Solution by Math4All999==
 +
https://youtu.be/5QYh3hNaDa0?feature=shared
  
 
== See Also ==
 
== See Also ==

Latest revision as of 11:18, 20 March 2024

The following problem is from both the 2022 AMC 10B #6 and 2022 AMC 12B #3, so both problems redirect to this page.

Problem

How many of the first ten numbers of the sequence $121, 11211, 1112111, \ldots$ are prime numbers?

$\textbf{(A) } 0 \qquad \textbf{(B) }1 \qquad \textbf{(C) }2 \qquad \textbf{(D) }3 \qquad \textbf{(E) }4$

Solution 1 (Generalization)

The $n$th term of this sequence is \[\sum_{k=n}^{2n}10^k + \sum_{k=0}^{n}10^k = 10^n\sum_{k=0}^{n}10^k + \sum_{k=0}^{n}10^k = \left(10^n+1\right)\sum_{k=0}^{n}10^k.\] It follows that the terms are \begin{align*} 121 &= 11\cdot11, \\ 11211 &= 101\cdot111, \\ 1112111 &= 1001\cdot1111, \\ & \ \vdots \end{align*} Therefore, there are $\boxed{\textbf{(A) } 0}$ prime numbers in this sequence.

~MRENTHUSIASM

Solution 2 (Detailed Explanation of Solution 1)

Denote this sequence as $a_{n}$, then we can find that \begin{align*} a_{1} &= 121 = 10^2 + 2\cdot10 + 1 = (10^2 + 10) + (10 + 1), \\ a_{2} &= 11211 = (10^4 + 10^3 + 10^2) + (10^2 + 10 + 1), \\ a_{3} &= 1112111 = (10^6 + 10^5 + 10^4 + 10^3) + (10^3 + 10^2 + 10 + 1), \\ & \ \vdots \end{align*} So, we can induct that the general term is \begin{align*} a_n &= (10^{2n} + 10^{2n-1} + \ldots + 10^{n+1} + 10^n) + (10^n + 10^{n-1} + \ldots +10 + 1) \\ &= 10^n\cdot(10^n + 10^{n-1} + \ldots +10 + 1) + (10^n + 10^{n-1} + \ldots +10 + 1) \\ &= \left(10^n+1\right)\sum_{k=0}^{n}10^k. \end{align*} Therefore, there are $\boxed{\textbf{(A) } 0}$ prime numbers in this sequence.

~PythZhou

Solution 3 (Simple Sums)

Observe how \begin{align*} 121 &= 110 + 11, \\ 11211 &= 11100 + 111, \\ 1112111 &= 1111000 + 1111, \\ & \ \vdots \end{align*} all take the form of \[\underbrace{111\ldots}_{n+1}\underbrace{00\ldots}_{n} + \underbrace{111\ldots}_{n+1} = \underbrace{111\ldots}_{n+1}(10^{n} + 1).\] Factoring each of the sums, we have \[11(10+1), 111(100+1), 1111(1000+1), \ldots\] respectively. With each number factored, there are $\boxed{\textbf{(A) } 0}$ primes in the set.

~ab2024

Solution 4 (Educated Guess)

Note that $121$ is divisible by $11$ and $11211$ is divisible by $3$. Because this is Problem 6 of the AMC 10, we assume we do not need to check two-digit prime divisibility or use obscure theorems. Therefore, the answer is $\boxed{\textbf{(A) } 0}.$

~Dhillonr25

Video Solution(1-16)

https://youtu.be/SCwQ9jUfr0g

~~Hayabusa1

Video Solution by Interstigation

https://youtu.be/_KNR0JV5rdI?t=562

Video Solution by Math4All999

https://youtu.be/5QYh3hNaDa0?feature=shared

See Also

2022 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2022 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png