Difference between revisions of "Excircle"

m (Related Formulas: condense into 1)
m (Properties)
 
(17 intermediate revisions by 7 users not shown)
Line 1: Line 1:
An '''excircle''' is a [[circle]] [[tangent (geometry)|tangent]] to the extensions of two sides of a [[triangle]] and the third side.
+
An '''excircle''' is a [[circle]] [[Tangent line|tangent]] to the extensions of two sides of a [[triangle]] and the third side.
 +
 
 +
{{asy image|<asy>
 +
defaultpen(fontsize(8));
 +
pair excenter(pair A, pair B, pair C){
 +
pair X, Z;
 +
X=A+expi((angle(A-B)+angle(C-A))/2);
 +
Z=C+expi((angle(C-B)+angle(A-C))/2);
 +
return extension(X,A,Z,C);
 +
}
 +
pair X=(0,0), Y=(10,0), Z=(3,6);
 +
pair exX=excenter(Z,X,Y), exY=excenter(X,Y,Z), exZ=excenter(Y,Z,X);
 +
draw(circle(exX,length(exX-foot(exX,Y,Z))));
 +
draw(circle(exY,length(exY-foot(exY,Z,X))));
 +
draw(circle(exZ,length(exZ-foot(exZ,X,Y))));
 +
draw((X-Y)+X--Y+1.5*(Y-X));draw((Y-Z)+Y--Z+(Z-Y));draw(2*(X-Z)+X--Z+2*(Z-X));
 +
label("X",X,(-1.5,-1));label("Y",Y,(2,-1));label("Z",Z,N);
 +
label("P",exX,NE);
 +
dot(X^^Y^^Z^^exX^^exY^^exZ);
 +
 
 +
draw(exX--(xpart(exX),0),dashed);
 +
 
 +
real slope1=(ypart(Z)-ypart(X))/(xpart(Z)-xpart(X));
 +
pair point1=exX+(1,-1/slope1);
 +
pair tangent1=extension(X,Z,point1,exX);
 +
draw(exX--tangent1,dashed);
 +
 
 +
real slope2=(ypart(Y)-ypart(Z))/(xpart(Y)-xpart(Z));
 +
pair point2=exX+(1,-1/slope2);
 +
pair tangent2=extension(Y,Z,point2,exX);
 +
draw(exX--tangent2,dashed);
 +
 
 +
markscalefactor=0.1;
 +
draw(rightanglemark(exX,tangent1,Z));
 +
draw(rightanglemark(exX,tangent2,Y));
 +
draw(rightanglemark(exX,(xpart(exX),0),(100,0)));
 +
</asy>|right|Triangle <math>\triangle XYZ</math> and its excircles.}}
  
{{image}}
 
  
 
== Properties ==
 
== Properties ==
For any triangle, there are three unique excircles. This follows from the fact that there is one, if any, circle such that three given distinct lines are tangent to it.
+
For any triangle, there are three unique excircles. This follows from the fact that there is one, if any, circle such that three given distinct lines are tangent to it.
 +
 
 +
1) Each excenter lies on the intersection of two [[angle bisector|external angle bisectors]].
 +
 
 +
2) The <math>A</math>-excenter lies on the [[angle bisector]] of <math>\angle A</math>.
 +
 
 +
== Related Geometrical Objects ==
 +
*An exradius is a radius of an excircle of a triangle.
 +
*An excenter is the center of an excircle of a triangle.
 
==Related Formulas==
 
==Related Formulas==
If the circle is tangent to side <math>a</math> of the circle, the radius is <math>\frac{K}{s-a}</math>, where <math>K</math> is the triangle's area, and <math>s = \frac{a+b+c}{2}</math> is the [[semiperimeter]].
+
If the circle is tangent to side <math>a</math> of the triangle, the radius is <math>\frac{K}{s-a}</math>, where <math>K</math> is the triangle's area, and <math>s = \frac{a+b+c}{2}</math> is the [[semiperimeter]].
  
 
==Problems==
 
==Problems==
 
===Introductory===
 
===Introductory===
*Let <math>E,F</math> be the feet of the perpendiculars from the vertices <math>B,C</math> of triangle <math>\triangle ABC</math>. Let <math>O</math> be the circumcenter <math>\triangle ABC</math>. Prove that
+
*Let <math>E,F</math> be the feet of the perpendiculars from the vertices <math>B,C</math> of triangle <math>\triangle ABC</math>. Let <math>O</math> be the circumcenter <math>\triangle ABC</math>. Prove that <cmath>OA \perp FE .</cmath>
\[
+
(<url>https://artofproblemsolving.com/community/c4h45647 Source</url>)
OA \perp FE .
+
 
\]
 
(<url>viewtopic.php?search_id=1224374835&t=45647 Source</url>)
 
 
===Intermediate===
 
===Intermediate===
 
*In triangle <math>ABC</math>, let the <math>A</math>-excircle touch <math>BC</math> at <math>D</math>. Let the <math>B</math>-excircle of triangle <math>ABD</math> touch <math>AD</math> at <math>P</math> and let the <math>C</math>-excircle of triangle <math>ACD</math> touch <math>AD</math> at <math>Q</math>. Is <math>\angle P\cong\angle Q</math> true for all triangles <math>ABC</math>? (<url>viewtopic.php?t=167688 Source</url>)
 
*In triangle <math>ABC</math>, let the <math>A</math>-excircle touch <math>BC</math> at <math>D</math>. Let the <math>B</math>-excircle of triangle <math>ABD</math> touch <math>AD</math> at <math>P</math> and let the <math>C</math>-excircle of triangle <math>ACD</math> touch <math>AD</math> at <math>Q</math>. Is <math>\angle P\cong\angle Q</math> true for all triangles <math>ABC</math>? (<url>viewtopic.php?t=167688 Source</url>)
Line 25: Line 66:
 
==See also==
 
==See also==
 
*[[Incircle]]
 
*[[Incircle]]
 
+
*[[Circumcircle]]
 
[[Category:Definition]]
 
[[Category:Definition]]
 
[[Category:Geometry]]
 
[[Category:Geometry]]

Latest revision as of 02:02, 1 July 2020

An excircle is a circle tangent to the extensions of two sides of a triangle and the third side.

[asy] defaultpen(fontsize(8)); pair excenter(pair A, pair B, pair C){ pair X, Z; X=A+expi((angle(A-B)+angle(C-A))/2); Z=C+expi((angle(C-B)+angle(A-C))/2); return extension(X,A,Z,C); } pair X=(0,0), Y=(10,0), Z=(3,6); pair exX=excenter(Z,X,Y), exY=excenter(X,Y,Z), exZ=excenter(Y,Z,X); draw(circle(exX,length(exX-foot(exX,Y,Z)))); draw(circle(exY,length(exY-foot(exY,Z,X)))); draw(circle(exZ,length(exZ-foot(exZ,X,Y)))); draw((X-Y)+X--Y+1.5*(Y-X));draw((Y-Z)+Y--Z+(Z-Y));draw(2*(X-Z)+X--Z+2*(Z-X)); label("X",X,(-1.5,-1));label("Y",Y,(2,-1));label("Z",Z,N); label("P",exX,NE); dot(X^^Y^^Z^^exX^^exY^^exZ);  draw(exX--(xpart(exX),0),dashed);  real slope1=(ypart(Z)-ypart(X))/(xpart(Z)-xpart(X)); pair point1=exX+(1,-1/slope1); pair tangent1=extension(X,Z,point1,exX); draw(exX--tangent1,dashed);  real slope2=(ypart(Y)-ypart(Z))/(xpart(Y)-xpart(Z)); pair point2=exX+(1,-1/slope2); pair tangent2=extension(Y,Z,point2,exX); draw(exX--tangent2,dashed);  markscalefactor=0.1; draw(rightanglemark(exX,tangent1,Z)); draw(rightanglemark(exX,tangent2,Y)); draw(rightanglemark(exX,(xpart(exX),0),(100,0))); [/asy]

Enlarge.png
Triangle $\triangle XYZ$ and its excircles.


Properties

For any triangle, there are three unique excircles. This follows from the fact that there is one, if any, circle such that three given distinct lines are tangent to it.

1) Each excenter lies on the intersection of two external angle bisectors.

2) The $A$-excenter lies on the angle bisector of $\angle A$.

Related Geometrical Objects

  • An exradius is a radius of an excircle of a triangle.
  • An excenter is the center of an excircle of a triangle.

Related Formulas

If the circle is tangent to side $a$ of the triangle, the radius is $\frac{K}{s-a}$, where $K$ is the triangle's area, and $s = \frac{a+b+c}{2}$ is the semiperimeter.

Problems

Introductory

  • Let $E,F$ be the feet of the perpendiculars from the vertices $B,C$ of triangle $\triangle ABC$. Let $O$ be the circumcenter $\triangle ABC$. Prove that \[OA \perp FE .\]

(<url>https://artofproblemsolving.com/community/c4h45647 Source</url>)

Intermediate

  • In triangle $ABC$, let the $A$-excircle touch $BC$ at $D$. Let the $B$-excircle of triangle $ABD$ touch $AD$ at $P$ and let the $C$-excircle of triangle $ACD$ touch $AD$ at $Q$. Is $\angle P\cong\angle Q$ true for all triangles $ABC$? (<url>viewtopic.php?t=167688 Source</url>)

Olympiad

  • Let $ABC$ be a triangle and let $\omega$ be its incircle. Denote by $D_1$ and $E_1$ the points where $\omega$ is tangent to sides $BC$ and $AC$, respectively. Denote by $D_2$ and $E_2$ the points on sides $BC$ and $AC$, respectively, such that $CD_2 = BD_1$ and $CE_2 = AE_1$, and denote by $P$ the point of intersection of segments $AD_2$ and $BE_2$. Circle $\omega$ intersects segment $AD_2$ at two points, the closer of which to the vertex $A$ is denoted by $Q$. Prove that $AQ = D_2P$. (Source)
  • Let $ABC$ be a triangle with circumcircle $\omega.$ Point $D$ lies on side $BC$ such that $\angle BAD = \angle CAD.$ Let $I_{A}$ denote the excenter of triangle $ABC$ opposite $A,$ and let $\omega_{A}$ denote the circle with $AI_{A}$ as its diameter. Circles $\omega$ and $\omega_{A}$ meet at $P$ other than $A.$ The circumcle of triangle $APD$ meet line $BC$ again at $Q\, ($other than $D).$ Prove that $Q$ lies on the excircle of triangle $ABC$ opposite $A$. (Source: Problem 13.2 - MOSP 2007)
  • Let $ABCD$ be a parallelogram. A variable line $\ell$ passing through the point $A$ intersects the rays $BC$ and $DC$ at points $X$ and $Y$, respectively. Let $K$ and $L$ be the centres of the excircles of triangles $ABX$ and $ADY$, touching the sides $BX$ and $DY$, respectively. Prove that the size of angle $KCL$ does not depend on the choice of $\ell$. (Source)

See also